Maximum GCD of all subarrays of length at least 2
Given an array arr[] of N numbers. The task is to find the maximum GCD of all subarrays of size greater than 1.
Examples:
Input: arr[] = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 }
Output: 9
Explanation:
GCD of the subarray {18, 9, 9} is maximum which is 9.
Input: arr[] = { 4, 8, 12, 16, 20, 24 }
Output: 4
Explanation:
GCD of the subarray {4, 18, 12, 16, 20, 24} is maximum which is 4.
Naive Approach: The idea is to generate all the subarray of size greater than 1 and then find the maximum of gcd of all subarray formed.
Time complexity: O(N2)
Efficient Approach: Let GCD of two numbers be g. Now if we take gcd of g with any third number say c then, gcd will decrease or remain same, but it will never increase.
The idea is to find gcd of every consecutive pair in the arr[] and the maximum of gcd of all the pairs formed is the desired result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find GCD int gcd( int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } void findMaxGCD( int arr[], int n) { // To store the maximum GCD int maxGCD = 0; // Traverse the array for ( int i = 0; i < n - 1; i++) { // Find GCD of the consecutive // element int val = gcd(arr[i], arr[i + 1]); // If calculated GCD > maxGCD // then update it if (val > maxGCD) { maxGCD = val; } } // Print the maximum GCD cout << maxGCD << endl; } // Driver Code int main() { int arr[] = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 }; int n = sizeof (arr) / sizeof (arr[0]); // Function Call findMaxGCD(arr, n); return 0; } |
Java
// Java program for the above approach import java.util.*; class GFG{ // Function to find GCD static int gcd( int a, int b) { if (b == 0 ) { return a; } return gcd(b, a % b); } static void findMaxGCD( int arr[], int n) { // To store the maximum GCD int maxGCD = 0 ; // Traverse the array for ( int i = 0 ; i < n - 1 ; i++) { // Find GCD of the consecutive // element int val = gcd(arr[i], arr[i + 1 ]); // If calculated GCD > maxGCD // then update it if (val > maxGCD) { maxGCD = val; } } // Print the maximum GCD System.out.print(maxGCD + "\n" ); } // Driver Code public static void main(String[] args) { int arr[] = { 3 , 18 , 9 , 9 , 5 , 15 , 8 , 7 , 6 , 9 }; int n = arr.length; // Function call findMaxGCD(arr, n); } } // This code is contributed by amal kumar choubey |
Python3
# Python3 program for the above approach # Function to find GCD def gcd(a, b): if (b = = 0 ): return a; return gcd(b, a % b); def findMaxGCD(arr, n): # To store the maximum GCD maxGCD = 0 ; # Traverse the array for i in range ( 0 , n - 1 ): # Find GCD of the consecutive # element val = gcd(arr[i], arr[i + 1 ]); # If calculated GCD > maxGCD # then update it if (val > maxGCD): maxGCD = val; # Print the maximum GCD print (maxGCD); # Driver Code if __name__ = = '__main__' : arr = [ 3 , 18 , 9 , 9 , 5 , 15 , 8 , 7 , 6 , 9 ]; n = len (arr); # Function call findMaxGCD(arr, n); # This code is contributed by 29AjayKumar |
C#
// C# program for the above approach using System; class GFG{ // Function to find GCD static int gcd( int a, int b) { if (b == 0) { return a; } return gcd(b, a % b); } static void findMaxGCD( int []arr, int n) { // To store the maximum GCD int maxGCD = 0; // Traverse the array for ( int i = 0; i < n - 1; i++) { // Find GCD of the consecutive // element int val = gcd(arr[i], arr[i + 1]); // If calculated GCD > maxGCD // then update it if (val > maxGCD) { maxGCD = val; } } // Print the maximum GCD Console.Write(maxGCD + "\n" ); } // Driver Code public static void Main() { int []arr = { 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 }; int n = arr.Length; // Function call findMaxGCD(arr, n); } } // This code is contributed by Code_Mech |
Javascript
<script> // Javascript program for the above approach // Function to find GCD function gcd(a, b) { if (b == 0) { return a; } return gcd(b, a % b); } function findMaxGCD(arr, n) { // To store the maximum GCD let maxGCD = 0; // Traverse the array for (let i = 0; i < n - 1; i++) { // Find GCD of the consecutive // element let val = gcd(arr[i], arr[i + 1]); // If calculated GCD > maxGCD // then update it if (val > maxGCD) { maxGCD = val; } } // Print the maximum GCD document.write(maxGCD + "<br>" ); } // Driver Code let arr = [ 3, 18, 9, 9, 5, 15, 8, 7, 6, 9 ]; let n = arr.length; // Function Call findMaxGCD(arr, n); // This code is contributed by Mayank Tyagi </script> |
9
Time Complexity: O(N), where N is the length of the array.
Auxiliary Space: O(log(max(a, b)))
Please Login to comment...