# Maximum games played by winner

There are N players which are playing a tournament. We need to find the maximum number of games the winner can play. In this tournament, two players are allowed to play against each other only if the difference between games played by them is not more than one.

**Examples:**

Input : N = 3 Output : 2 Maximum games winner can play = 2 Assume that player are P1, P2 and P3 First, two players will play let (P1, P2) Now winner will play against P3, making total games played by winner = 2 Input : N = 4 Output : 2 Maximum games winner can play = 2 Assume that player are P1, P2, P3 and P4 First two pairs will play lets (P1, P2) and (P3, P4). Now winner of these two games will play against each other, making total games played by winner = 2

We can solve this problem by first computing minimum number of players required such that the winner will play x games. Once this is computed actual problem is just inverse of this. Now assume that dp[i] denotes minimum number of players required so that winner plays i games. We can write a recursive relation among dp values as,

dp[i + 1] = dp[i] + dp[i – 1] because if runner up has played (i – 1) games and winner has played i games and all players against which they have played the match are disjoint, total games played by winner will be addition of those two sets of players.

Above recursive relation can be written as dp[i] = dp[i – 1] + dp[i – 2]

Which is same as the Fibonacci series relation, so our final answer will be the index of the maximal Fibonacci number which is less than or equal to given number of players in the input.

## C++

`// C/C++ program to find maximum number of ` `// games played by winner ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// method returns maximum games a winner needs ` `// to play in N-player tournament ` `int` `maxGameByWinner(` `int` `N) ` `{ ` ` ` `int` `dp[N]; ` ` ` ` ` `// for 0 games, 1 player is needed ` ` ` `// for 1 game, 2 players are required ` ` ` `dp[0] = 1; ` ` ` `dp[1] = 2; ` ` ` ` ` `// loop until i-th Fibonacci number is ` ` ` `// less than or equal to N ` ` ` `int` `i = 2; ` ` ` `do` `{ ` ` ` `dp[i] = dp[i - 1] + dp[i - 2]; ` ` ` `} ` `while` `(dp[i++] <= N); ` ` ` ` ` `// result is (i - 2) because i will be ` ` ` `// incremented one extra in while loop ` ` ` `// and we want the last value which is ` ` ` `// smaller than N, so one more decrement ` ` ` `return` `(i - 2); ` `} ` ` ` `// Driver code to test above methods ` `int` `main() ` `{ ` ` ` `int` `N = 10; ` ` ` `cout << maxGameByWinner(N) << endl; ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java program to find maximum number of ` `// games played by winner ` `class` `Max_game_winner { ` ` ` ` ` `// method returns maximum games a winner needs ` ` ` `// to play in N-player tournament ` ` ` `static` `int` `maxGameByWinner(` `int` `N) ` ` ` `{ ` ` ` `int` `[] dp = ` `new` `int` `[N]; ` ` ` ` ` `// for 0 games, 1 player is needed ` ` ` `// for 1 game, 2 players are required ` ` ` `dp[` `0` `] = ` `1` `; ` ` ` `dp[` `1` `] = ` `2` `; ` ` ` ` ` `// loop until i-th Fibonacci number is ` ` ` `// less than or equal to N ` ` ` `int` `i = ` `2` `; ` ` ` `do` `{ ` ` ` `dp[i] = dp[i - ` `1` `] + dp[i - ` `2` `]; ` ` ` `} ` `while` `(dp[i++] <= N); ` ` ` ` ` `// result is (i - 2) because i will be ` ` ` `// incremented one extra in while loop ` ` ` `// and we want the last value which is ` ` ` `// smaller than N, so one more decrement ` ` ` `return` `(i - ` `2` `); ` ` ` `} ` ` ` ` ` `// Driver code to test above methods ` ` ` `public` `static` `void` `main(String args[]) ` ` ` `{ ` ` ` `int` `N = ` `10` `; ` ` ` `System.out.println(maxGameByWinner(N)); ` ` ` `} ` `} ` `//This code is contributed by Sumit Ghosh ` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program to find maximum ` `# number of games played by winner ` ` ` `# method returns maximum games ` `# a winner needs to play in ` `# N-player tournament ` ` ` `def` `maxGameByWinner(N): ` ` ` `dp ` `=` `[` `0` `for` `i ` `in` `range` `(N)] ` ` ` ` ` `# for 0 games, 1 player is needed ` ` ` `# for 1 game, 2 players are required ` ` ` `dp[` `0` `] ` `=` `1` ` ` `dp[` `1` `] ` `=` `2` ` ` ` ` `# loop until i-th Fibonacci ` ` ` `# number is less than or ` ` ` `# equal to N ` ` ` `i ` `=` `1` ` ` `while` `dp[i] <` `=` `N: ` ` ` `i ` `=` `i ` `+` `1` ` ` `dp[i] ` `=` `dp[i ` `-` `1` `] ` `+` `dp[i ` `-` `2` `] ` ` ` ` ` `# result is (i - 1) because i will be ` ` ` `# incremented one extra in while loop ` ` ` `# and we want the last value which is ` ` ` `# smaller than N, so ` ` ` `return` `(i ` `-` `1` `) ` ` ` `# Driver code ` `N ` `=` `10` `print` `(maxGameByWinner(N)) ` ` ` `# This code is contributed ` `# by sahilshelangia ` |

*chevron_right*

*filter_none*

## C#

`// C# program to find maximum number ` `// of games played by winner ` `using` `System; ` ` ` `class` `GFG { ` ` ` ` ` `// method returns maximum games a ` ` ` `// winner needs to play in N-player ` ` ` `// tournament ` ` ` `static` `int` `maxGameByWinner(` `int` `N) ` ` ` `{ ` ` ` `int` `[] dp = ` `new` `int` `[N]; ` ` ` ` ` `// for 0 games, 1 player is needed ` ` ` `// for 1 game, 2 players are required ` ` ` `dp[0] = 1; ` ` ` `dp[1] = 2; ` ` ` ` ` `// loop until i-th Fibonacci number ` ` ` `// is less than or equal to N ` ` ` `int` `i = 2; ` ` ` ` ` `do` `{ ` ` ` `dp[i] = dp[i - 1] + dp[i - 2]; ` ` ` `} ` `while` `(dp[i++] <= N); ` ` ` ` ` `// result is (i - 2) because i will be ` ` ` `// incremented one extra in while loop ` ` ` `// and we want the last value which is ` ` ` `// smaller than N, so one more decrement ` ` ` `return` `(i - 2); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `Main() ` ` ` `{ ` ` ` `int` `N = 10; ` ` ` `Console.Write(maxGameByWinner(N)); ` ` ` `} ` `} ` ` ` `// This code is contributed by Nitin Mittal. ` |

*chevron_right*

*filter_none*

## PHP

`<?php ` `// PHP program to find maximum number ` `// of games played by winner ` ` ` `// Method returns maximum games ` `// a winner needs to play in ` `// N-player tournament ` `function` `maxGameByWinner(` `$N` `) ` `{ ` ` ` `$dp` `[` `$N` `]=0; ` ` ` ` ` `// for 0 games, 1 player is needed ` ` ` `// for 1 game, 2 players are required ` ` ` `$dp` `[0] = 1; ` ` ` `$dp` `[1] = 2; ` ` ` ` ` `// loop until i-th Fibonacci number is ` ` ` `// less than or equal to N ` ` ` `$i` `= 2; ` ` ` `do` ` ` `{ ` ` ` `$dp` `[` `$i` `] = ` `$dp` `[` `$i` `- 1] + ` `$dp` `[` `$i` `- 2]; ` ` ` `} ` `while` `(` `$dp` `[` `$i` `++] <= ` `$N` `); ` ` ` ` ` `// result is (i - 2) because i will be ` ` ` `// incremented one extra in while loop ` ` ` `// and we want the last value which is ` ` ` `// smaller than N, so one more decrement ` ` ` `return` `(` `$i` `- 2); ` `} ` ` ` ` ` `// Driver Code ` ` ` `$N` `= 10; ` ` ` `echo` `maxGameByWinner(` `$N` `); ` ` ` `// This code is contributed by nitin mittal ` `?> ` |

*chevron_right*

*filter_none*

**Output :**

4

This article is contributed by **Utkarsh Trivedi**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

## Recommended Posts:

- Coin game winner where every player has three choices
- Predict the winner of the game | Sprague-Grundy
- Maximum sum combination from two arrays
- Maximum size subset with given sum
- Maximum subarray sum in O(n) using prefix sum
- Maximum Sum Decreasing Subsequence
- Maximum Sum Subsequence of length k
- Longest subarray having maximum sum
- Maximum sum such that no two elements are adjacent | Set 2
- Size of The Subarray With Maximum Sum
- Maximum length of segments of 0's and 1's
- Maximum sum bitonic subarray
- Maximum sum path in a Matrix
- Maximum sum rectangle in a 2D matrix | DP-27
- Maximum Product Cutting | DP-36