Skip to content
Related Articles

Related Articles

Improve Article

Maximum elements which can be crossed using given units of a and b

  • Last Updated : 18 May, 2021
Geek Week

Given a binary array of N elements and two initial values a and b. We can cross the i-th element if: 
 

  1. If a[i] == 0, then we can use 1 unit from either of b or a to cross the i-th element.
  2. If a[i] == 1, then if we use 1 unit from b, a increases by 1 unit. In case 1 unit is used from a, then there is no increase in either of a or b.

The task is to find the maximum number of elements that can be crossed using a and b units. 
Note: When we increase a by 1 at any step, it cannot exceed the original value of a. 
Examples: 
 

Input: arr[] = {0, 1, 0, 1, 0}, a = 1, b = 2; 
Output:
Use 1 unit from a to cross 1st element. (a = 0 and b = 2) 
Use 1 unit from b to cross 2nd element. (a = 1 and b = 1) 
Use 1 unit from a to cross 3rd element. (a = 0 and b = 1) 
Use 1 unit from b to cross 4th element. (a = 1 and b = 0) 
Use 1 unit from a to cross 5th element. (a = 0 and b = 0) 
Input: a[] = {1, 0, 0, 1, 0, 1}, a = 1, b = 2 
Use 1 unit from b to cross first element. (a = 1 and b = 1) 
Use 1 unit from b to cross second element. (a = 1 and b = 0) 
Use 1 unit from a to cross third element. (a = 0 and b = 0) 
Output:

 

Approach: Iterate in the array element and perform the following steps: 
 



  • Break if we do not have either of b or a to pass the element.
  • Else, use b if there is no a left, and increase a by 1 if arr[i] == 1.
  • Else, use a if there is no b left.
  • Else, use b if arr[i]==1 and increase a by 1 till the maximum of the original a.
  • Else, simply use 1 unit from a.

Below is the implementation of the above approach: 
 

C++




// C++ program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the number
// of elements crossed
int findElementsCrossed(int arr[], int a, int b, int n)
{
    // Keep a copy of a
    int aa = a;
    int ans = 0;
 
    // Iterate in the binary array
    for (int i = 0; i < n; i++) {
 
        // If no a and b left to use
        if (a == 0 && b == 0)
            break;
 
        // If there is no a
        else if (a == 0) {
 
            // use b and increase a by 1
            // if arr[i] is 1
            if (arr[i] == 1) {
                b -= 1;
                a = min(aa, a + 1);
            }
 
            // simply use b
            else
                b -= 1;
        }
 
        // Use a if theres no b
        else if (b == 0)
            a--;
 
        // Increase a and use b if arr[i] == 1
        else if (arr[i] == 1 && a < aa) {
            b -= 1;
            a = min(aa, a + 1);
        }
 
        // Use a
        else
            a--;
        ans++;
    }
 
    return ans;
}
 
// Driver code
int main()
{
    int arr[] = { 1, 0, 0, 1, 0, 1 };
    int n = sizeof(arr) / sizeof(arr[0]);
    int a = 1;
    int b = 2;
    cout << findElementsCrossed(arr, a, b, n);
 
    return 0;
}

Java




// Java program to implement
// the above approach
import java.util.*;
 
class GFG
{
 
// Function to find the number
// of elements crossed
static int findElementsCrossed(int arr[],
                        int a, int b, int n)
{
    // Keep a copy of a
    int aa = a;
    int ans = 0;
 
    // Iterate in the binary array
    for (int i = 0; i < n; i++)
    {
 
        // If no a and b left to use
        if (a == 0 && b == 0)
            break;
 
        // If there is no a
        else if (a == 0)
        {
 
            // use b and increase a by 1
            // if arr[i] is 1
            if (arr[i] == 1)
            {
                b -= 1;
                a = Math.min(aa, a + 1);
            }
 
            // simply use b
            else
                b -= 1;
        }
 
        // Use a if theres no b
        else if (b == 0)
            a--;
 
        // Increase a and use b if arr[i] == 1
        else if (arr[i] == 1 && a < aa)
        {
            b -= 1;
            a = Math.min(aa, a + 1);
        }
 
        // Use a
        else
            a--;
        ans++;
    }
 
    return ans;
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 1, 0, 0, 1, 0, 1 };
    int n = arr.length;
    int a = 1;
    int b = 2;
    System.out.println(findElementsCrossed(arr, a, b, n));
 
}
}
 
// This code is contributed by
// Surendra_Gangwar

Python3




# Python3 program to implement
# the above approach
 
# Function to find the number
# of elements crossed
def findElementsCrossed(arr, a, b, n):
 
    # Keep a copy of a
    aa = a
    ans = 0
 
    # Iterate in the binary array
    for i in range(n):
 
        # If no a and b left to use
        if (a == 0 and b == 0):
            break
 
        # If there is no a
        elif (a == 0):
 
            # use b and increase a by 1
            # if arr[i] is 1
            if (arr[i] == 1):
                b -= 1
                a = min(aa, a + 1)
             
            # simply use b
            else:
                b -= 1
         
        # Use a if theres no b
        elif (b == 0):
            a -= 1
 
        # Increase a and use b if arr[i] == 1
        elif (arr[i] == 1 and a < aa):
            b -= 1
            a = min(aa, a + 1)
         
        # Use a
        else:
            a -= 1
        ans += 1
     
    return ans
 
# Driver code
arr = [1, 0, 0, 1, 0, 1]
n = len(arr)
a = 1
b = 2
print(findElementsCrossed(arr, a, b, n))
 
# This code is contributed by mohit kumar

C#




// C# implementation of the above approach
using System;
 
class GFG
{
 
// Function to find the number
// of elements crossed
static int findElementsCrossed(int []arr,
                        int a, int b, int n)
{
    // Keep a copy of a
    int aa = a;
    int ans = 0;
 
    // Iterate in the binary array
    for (int i = 0; i < n; i++)
    {
 
        // If no a and b left to use
        if (a == 0 && b == 0)
            break;
 
        // If there is no a
        else if (a == 0)
        {
 
            // use b and increase a by 1
            // if arr[i] is 1
            if (arr[i] == 1)
            {
                b -= 1;
                a = Math.Min(aa, a + 1);
            }
 
            // simply use b
            else
                b -= 1;
        }
 
        // Use a if theres no b
        else if (b == 0)
            a--;
 
        // Increase a and use b if arr[i] == 1
        else if (arr[i] == 1 && a < aa)
        {
            b -= 1;
            a = Math.Min(aa, a + 1);
        }
 
        // Use a
        else
            a--;
        ans++;
    }
 
    return ans;
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 1, 0, 0, 1, 0, 1 };
    int n = arr.Length;
    int a = 1;
    int b = 2;
    Console.WriteLine(findElementsCrossed(arr, a, b, n));
 
}
}
 
// This code contributed by Rajput-Ji

PHP




<?php
// PHP program to implement
// the above approach
 
// Function to find the number
// of elements crossed
function findElementsCrossed($arr, $a, $b, $n)
{
    // Keep a copy of a
    $aa = $a;
    $ans = 0;
 
    // Iterate in the binary array
    for ($i = 0; $i < $n; $i++)
    {
 
        // If no a and b left to use
        if ($a == 0 && $b == 0)
            break;
 
        // If there is no a
        else if ($a == 0)
        {
 
            // use b and increase a by 1
            // if arr[i] is 1
            if ($arr[$i] == 1)
            {
                $b -= 1;
                $a = min($aa, $a + 1);
            }
 
            // simply use b
            else
                $b -= 1;
        }
 
        // Use a if theres no b
        else if ($b == 0)
            $a--;
 
        // Increase a and use b if arr[i] == 1
        else if ($arr[$i] == 1 && $a < $aa)
        {
            $b -= 1;
            $a = min($aa, $a + 1);
        }
 
        // Use a
        else
            $a--;
        $ans++;
    }
 
    return $ans;
}
 
// Driver code
$arr = array(1, 0, 0, 1, 0, 1);
$n = sizeof($arr);
$a = 1;
$b = 2;
echo findElementsCrossed($arr, $a, $b, $n);
 
// This code is contributed by Akanksha Rai
?>

Javascript




<script>
// javascript program to implement
// the above approach
 
    // Function to find the number
    // of elements crossed
    function findElementsCrossed(arr , a , b , n) {
        // Keep a copy of a
        var aa = a;
        var ans = 0;
 
        // Iterate in the binary array
        for (i = 0; i < n; i++) {
 
            // If no a and b left to use
            if (a == 0 && b == 0)
                break;
 
            // If there is no a
            else if (a == 0) {
 
                // use b and increase a by 1
                // if arr[i] is 1
                if (arr[i] == 1) {
                    b -= 1;
                    a = Math.min(aa, a + 1);
                }
 
                // simply use b
                else
                    b -= 1;
            }
 
            // Use a if theres no b
            else if (b == 0)
                a--;
 
            // Increase a and use b if arr[i] == 1
            else if (arr[i] == 1 && a < aa) {
                b -= 1;
                a = Math.min(aa, a + 1);
            }
 
            // Use a
            else
                a--;
            ans++;
        }
 
        return ans;
    }
 
    // Driver code
     
        var arr = [ 1, 0, 0, 1, 0, 1 ];
        var n = arr.length;
        var a = 1;
        var b = 2;
        document.write(findElementsCrossed(arr, a, b, n));
 
 
// This code contributed by umadevi9616
</script>
Output: 
3

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :