Maximum element between two nodes of BST

Given an array of N elements and two integers A, B which belongs to the given array. Create a Binary Search Tree by inserting element from arr[0] to arr[n-1]. The task is to find the maximum element in the path from A to B.

Examples :

Input : arr[] = { 18, 36, 9, 6, 12, 10, 1, 8 }, 
        a = 1, 
        b = 10.
Output : 12


Path from 1 to 10 contains { 1, 6, 9, 12, 10 }. Maximum element is 12.



The idea is to find Lowest Common Ancestor of node ‘a’ and node ‘b’. Then search maximum node between LCA and ‘a’, also find maximum node between LCA and ‘b’. Answer will be maximum node of two.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find maximum element in the path
// between two Nodes of Binary Search Tree.
#include <bits/stdc++.h>
using namespace std;
  
struct Node
{
    struct Node *left, *right;
    int data;
};
  
// Create and return a pointer of new Node.
Node *createNode(int x)
{
    Node *p = new Node;
    p -> data = x;
    p -> left = p -> right = NULL;
    return p;
}
  
// Insert a new Node in Binary Search Tree.
void insertNode(struct Node *root, int x)
{
    Node *p = root, *q = NULL;
  
    while (p != NULL)
    {
        q = p;
        if (p -> data < x)
            p = p -> right;
        else
            p = p -> left;
    }
  
    if (q == NULL)
        p = createNode(x);
    else
    {
        if (q -> data < x)
            q -> right = createNode(x);
        else
            q -> left = createNode(x);
    }
}
  
// Return the maximum element between a Node
// and its given ancestor.
int maxelpath(Node *q, int x)
{
    Node *p = q;
  
    int mx = INT_MIN;
  
    // Traversing the path between ansector and
    // Node and finding maximum element.
    while (p -> data != x)
    {
        if (p -> data > x)
        {
            mx = max(mx, p -> data);
            p = p -> left;
        }
        else
        {
            mx = max(mx, p -> data);
            p = p -> right;
        }
    }
  
    return max(mx, x);
}
  
// Return maximum element in the path between
// two given Node of BST.
int maximumElement(struct Node *root, int x, int y)
{
    Node *p = root;
  
    // Finding the LCA of Node x and Node y
    while ((x < p -> data && y < p -> data) ||
        (x > p -> data && y > p -> data))
    {
        // Checking if both the Node lie on the
        // left side of the parent p.
        if (x < p -> data && y < p -> data)
            p = p -> left;
  
        // Checking if both the Node lie on the
        // right side of the parent p.
        else if (x > p -> data && y > p -> data)
            p = p -> right;
    }
  
    // Return the maximum of maximum elements occur
    // in path from ancestor to both Node.
    return max(maxelpath(p, x), maxelpath(p, y));
}
  
  
// Driver Code
int main()
{
    int arr[] = { 18, 36, 9, 6, 12, 10, 1, 8 };
    int a = 1, b = 10;
    int n = sizeof(arr) / sizeof(arr[0]);
  
    // Creating the root of Binary Search Tree
    struct Node *root = createNode(arr[0]);
  
    // Inserting Nodes in Binary Search Tree
    for (int i = 1; i < n; i++)
        insertNode(root, arr[i]);
  
    cout << maximumElement(root, a, b) << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find maximum element in the path
// between two Nodes of Binary Search Tree.
class Solution
{
      
static class Node
{
     Node left, right;
    int data;
}
   
// Create and return a pointer of new Node.
static Node createNode(int x)
{
    Node p = new Node();
    p . data = x;
    p . left = p . right = null;
    return p;
}
   
// Insert a new Node in Binary Search Tree.
static void insertNode( Node root, int x)
{
    Node p = root, q = null;
   
    while (p != null)
    {
        q = p;
        if (p . data < x)
            p = p . right;
        else
            p = p . left;
    }
   
    if (q == null)
        p = createNode(x);
    else
    {
        if (q . data < x)
            q . right = createNode(x);
        else
            q . left = createNode(x);
    }
}
   
// Return the maximum element between a Node
// and its given ancestor.
static int maxelpath(Node q, int x)
{
    Node p = q;
   
    int mx = -1;
   
    // Traversing the path between ansector and
    // Node and finding maximum element.
    while (p . data != x)
    {
        if (p . data > x)
        {
            mx = Math.max(mx, p . data);
            p = p . left;
        }
        else
        {
            mx = Math.max(mx, p . data);
            p = p . right;
        }
    }
   
    return Math.max(mx, x);
}
   
// Return maximum element in the path between
// two given Node of BST.
static int maximumElement( Node root, int x, int y)
{
    Node p = root;
   
    // Finding the LCA of Node x and Node y
    while ((x < p . data && y < p . data) ||
        (x > p . data && y > p . data))
    {
        // Checking if both the Node lie on the
        // left side of the parent p.
        if (x < p . data && y < p . data)
            p = p . left;
   
        // Checking if both the Node lie on the
        // right side of the parent p.
        else if (x > p . data && y > p . data)
            p = p . right;
    }
   
    // Return the maximum of maximum elements occur
    // in path from ancestor to both Node.
    return Math.max(maxelpath(p, x), maxelpath(p, y));
}
   
   
// Driver Code
public static void main(String args[])
{
    int arr[] = { 18, 36, 9, 6, 12, 10, 1, 8 };
    int a = 1, b = 10;
    int n =arr.length;
   
    // Creating the root of Binary Search Tree
     Node root = createNode(arr[0]);
   
    // Inserting Nodes in Binary Search Tree
    for (int i = 1; i < n; i++)
        insertNode(root, arr[i]);
   
    System.out.println( maximumElement(root, a, b) );
   
}
}
//contributed by Arnab Kundu 

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find maximum element 
# in the path between two Nodes of Binary 
# Search Tree. 
  
# Create and return a pointer of new Node. 
class createNode: 
  
    # Constructor to create a new node 
    def __init__(self, data): 
        self.data = data 
        self.left = None
        self.right = None
  
# Insert a new Node in Binary Search Tree. 
def insertNode(root, x):
    p, q = root, None
  
    while p != None:
        q =
        if p.data < x:
            p = p.right 
        else:
            p = p.left
  
    if q == None:
        p = createNode(x)
    else:
        if q.data < x: 
            q.right = createNode(x) 
        else:
            q.left = createNode(x)
  
# Return the maximum element between a 
# Node and its given ancestor. 
def maxelpath(q, x):
    p = q
  
    mx = -999999999999
  
    # Traversing the path between ansector 
    # and Node and finding maximum element. 
    while p.data != x:
        if p.data > x:
            mx = max(mx, p.data) 
            p = p.left
        else:
            mx = max(mx, p.data) 
            p = p.right
  
    return max(mx, x)
  
# Return maximum element in the path 
# between two given Node of BST. 
def maximumElement(root, x, y):
    p = root 
  
    # Finding the LCA of Node x and Node y 
    while ((x < p.data and y < p.data) or 
           (x > p.data and y > p.data)):
                 
        # Checking if both the Node lie on 
        # the left side of the parent p. 
        if x < p.data and y < p.data: 
            p = p.left 
  
        # Checking if both the Node lie on 
        # the right side of the parent p. 
        elif x > p.data and y > p.data: 
            p = p.right
  
    # Return the maximum of maximum elements 
    # occur in path from ancestor to both Node. 
    return max(maxelpath(p, x), maxelpath(p, y))
  
# Driver Code 
if __name__ == '__main__':
    arr = [ 18, 36, 9, 6, 12, 10, 1, 8]
    a, b = 1, 10
    n = len(arr)
  
    # Creating the root of Binary Search Tree 
    root = createNode(arr[0]) 
  
    # Inserting Nodes in Binary Search Tree 
    for i in range(1,n):
        insertNode(root, arr[i])
  
    print(maximumElement(root, a, b))
  
# This code is contributed by PranchalK

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

using System;
  
// C# program to find maximum element in the path 
// between two Nodes of Binary Search Tree. 
public class Solution
{
  
public class Node
{
     public Node left, right;
    public int data;
}
  
// Create and return a pointer of new Node. 
public static Node createNode(int x)
{
    Node p = new Node();
    p.data = x;
    p.left = p.right = null;
    return p;
}
  
// Insert a new Node in Binary Search Tree. 
public static void insertNode(Node root, int x)
{
    Node p = root, q = null;
  
    while (p != null)
    {
        q = p;
        if (p.data < x)
        {
            p = p.right;
        }
        else
        {
            p = p.left;
        }
    }
  
    if (q == null)
    {
        p = createNode(x);
    }
    else
    {
        if (q.data < x)
        {
            q.right = createNode(x);
        }
        else
        {
            q.left = createNode(x);
        }
    }
}
  
// Return the maximum element between a Node 
// and its given ancestor. 
public static int maxelpath(Node q, int x)
{
    Node p = q;
  
    int mx = -1;
  
    // Traversing the path between ansector and 
    // Node and finding maximum element. 
    while (p.data != x)
    {
        if (p.data > x)
        {
            mx = Math.Max(mx, p.data);
            p = p.left;
        }
        else
        {
            mx = Math.Max(mx, p.data);
            p = p.right;
        }
    }
  
    return Math.Max(mx, x);
}
  
// Return maximum element in the path between 
// two given Node of BST. 
public static int maximumElement(Node root, int x, int y)
{
    Node p = root;
  
    // Finding the LCA of Node x and Node y 
    while ((x < p.data && y < p.data) || (x > p.data && y > p.data))
    {
        // Checking if both the Node lie on the 
        // left side of the parent p. 
        if (x < p.data && y < p.data)
        {
            p = p.left;
        }
  
        // Checking if both the Node lie on the 
        // right side of the parent p. 
        else if (x > p.data && y > p.data)
        {
            p = p.right;
        }
    }
  
    // Return the maximum of maximum elements occur 
    // in path from ancestor to both Node. 
    return Math.Max(maxelpath(p, x), maxelpath(p, y));
}
  
  
// Driver Code 
public static void Main(string[] args)
{
    int[] arr = new int[] {18, 36, 9, 6, 12, 10, 1, 8};
    int a = 1, b = 10;
    int n = arr.Length;
  
    // Creating the root of Binary Search Tree 
     Node root = createNode(arr[0]);
  
    // Inserting Nodes in Binary Search Tree 
    for (int i = 1; i < n; i++)
    {
        insertNode(root, arr[i]);
    }
  
    Console.WriteLine(maximumElement(root, a, b));
  
}
}
  
  //  This code is contributed by Shrikant13

chevron_right



Output :

12

Time complexity : O(h) where h is height of BST

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


4


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.