Maximum distance between two 1’s in Binary representation of N

Given a number N, the task is to find the maximum distance between two 1’s in the binary representation of given N. Print -1 if binary representation contains less than two 1’s.

Examples:

Input: N = 131
Output: 6
131 in binary = 10000011.
The maximum distance between two 1's = 6.

Input: N = 8
Output: -1
8 in binary = 01000.
It contains less than two 1's.

Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the
// Maximum distance between two 1's
// in Binary representation of N
  
#include <bits/stdc++.h>
using namespace std;
  
int longest_gap(int N)
{
  
    int distance = 0, count = 0,
        first_1 = -1, last_1 = -1;
  
    // Compute the binary representation
    while (N) {
  
        count++;
  
        int r = N & 1;
  
        if (r == 1) {
            first_1 = first_1 == -1
                          ? count
                          : first_1;
            last_1 = count;
        }
  
        N = N / 2;
    }
  
    // if N is a power of 2
    // then return -1
    if (last_1 <= first_1) {
        return -1;
    }
    // else find the distance
    // between the first position of 1
    // and last position of 1
    else {
        distance = (last_1 - first_1 - 1);
        return distance;
    }
}
  
// Driver code
int main()
{
    int N = 131;
    cout << longest_gap(N) << endl;
  
    N = 8;
    cout << longest_gap(N) << endl;
  
    N = 17;
    cout << longest_gap(N) << endl;
  
    N = 33;
    cout << longest_gap(N) << endl;
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the 
// Maximum distance between two 1's 
// in Binary representation of N 
class GFG
{
    static int longest_gap(int N) 
    
        int distance = 0, count = 0
            first_1 = -1, last_1 = -1
      
        // Compute the binary representation 
        while (N != 0
        
            count++; 
      
            int r = N & 1
      
            if (r == 1
            
                first_1 = first_1 == -1
                                  count : first_1; 
                last_1 = count; 
            
            N = N / 2
        
      
        // if N is a power of 2 
        // then return -1 
        if (last_1 <= first_1) 
        
            return -1
        
          
        // else find the distance 
        // between the first position of 1 
        // and last position of 1 
        else
        
            distance = (last_1 - first_1 - 1); 
            return distance; 
        
    
      
    // Driver code 
    public static void main (String[] args) 
    
        int N = 131
        System.out.println(longest_gap(N)); 
      
        N = 8
        System.out.println(longest_gap(N)); 
      
        N = 17
        System.out.println(longest_gap(N)); 
      
        N = 33
        System.out.println(longest_gap(N)); 
    
}
  
// This code is contributed by AnkitRai01
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the
# Maximum distance between two 1's
# in Binary representation of N
def longest_gap(N):
  
    distance = 0
    count = 0
    first_1 = -1
    last_1 = -1
  
    # Compute the binary representation
    while (N > 0):
        count += 1
  
        r = N & 1
  
        if (r == 1):
            if first_1 == -1:
                first_1 = count
            else:
                first_1 = first_1
  
            last_1 = count
  
        N = N // 2
  
    # if N is a power of 2
    # then return -1
    if (last_1 <= first_1):
        return -1
          
    # else find the distance
    # between the first position of 1
    # and last position of 1
    else:
        distance = last_1 - first_1 - 1
        return distance
  
# Driver code
N = 131
print(longest_gap(N))
  
N = 8
print(longest_gap(N))
  
N = 17
print(longest_gap(N))
  
N = 33
print(longest_gap(N))
  
# This code is contributed by Mohit Kumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the 
// Maximum distance between two 1's 
// in Binary representation of N 
using System;
  
class GFG
{
    static int longest_gap(int N) 
    
        int distance = 0, count = 0, 
            first_1 = -1, last_1 = -1; 
      
        // Compute the binary representation 
        while (N != 0) 
        
            count++; 
      
            int r = N & 1; 
      
            if (r == 1) 
            
                first_1 = first_1 == -1 ? 
                                  count : first_1; 
                last_1 = count; 
            
            N = N / 2; 
        
      
        // if N is a power of 2 
        // then return -1 
        if (last_1 <= first_1) 
        
            return -1; 
        
          
        // else find the distance 
        // between the first position of 1 
        // and last position of 1 
        else
        
            distance = (last_1 - first_1 - 1); 
            return distance; 
        
    
      
    // Driver code 
    public static void Main (String []args) 
    
        int N = 131; 
        Console.WriteLine(longest_gap(N)); 
      
        N = 8; 
        Console.WriteLine(longest_gap(N)); 
      
        N = 17; 
        Console.WriteLine(longest_gap(N)); 
      
        N = 33; 
        Console.WriteLine(longest_gap(N)); 
    
}
  
// This code is contributed by Arnab Kundu
chevron_right

Output:
6
-1
3
4

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :