Skip to content
Related Articles

Related Articles

Improve Article

Maximum distance between two 1’s in Binary representation of N

  • Last Updated : 30 Apr, 2021

Given a number N, the task is to find the maximum distance between two 1’s in the binary representation of given N. Print -1 if binary representation contains less than two 1’s.
Examples: 
 

Input: N = 131
Output: 6
131 in binary = 10000011.
The maximum distance between two 1's = 6.

Input: N = 8
Output: -1
8 in binary = 01000.
It contains less than two 1's.

 

Approach: 
 

  • First find the binary representation of N.
  • For each bit calculated, check if its a ‘1’.
  • Store the index of first ‘1’ found in first_1, and the last ‘1’ found in last_1
  • Then check if the last_1 is less than or equal to first_1. It will be the case when N is a power of 2. Hence print -1 in this case.
  • In any other case, find the difference between the last_1 and first_1. This will be the required distance.

Below is the implementation of the above approach: 
 

C++




// C++ program to find the
// Maximum distance between two 1's
// in Binary representation of N
 
#include <bits/stdc++.h>
using namespace std;
 
int longest_gap(int N)
{
 
    int distance = 0, count = 0,
        first_1 = -1, last_1 = -1;
 
    // Compute the binary representation
    while (N) {
 
        count++;
 
        int r = N & 1;
 
        if (r == 1) {
            first_1 = first_1 == -1
                          ? count
                          : first_1;
            last_1 = count;
        }
 
        N = N / 2;
    }
 
    // if N is a power of 2
    // then return -1
    if (last_1 <= first_1) {
        return -1;
    }
    // else find the distance
    // between the first position of 1
    // and last position of 1
    else {
        distance = (last_1 - first_1 - 1);
        return distance;
    }
}
 
// Driver code
int main()
{
    int N = 131;
    cout << longest_gap(N) << endl;
 
    N = 8;
    cout << longest_gap(N) << endl;
 
    N = 17;
    cout << longest_gap(N) << endl;
 
    N = 33;
    cout << longest_gap(N) << endl;
 
    return 0;
}

Java




// Java program to find the
// Maximum distance between two 1's
// in Binary representation of N
class GFG
{
    static int longest_gap(int N)
    {
        int distance = 0, count = 0,
            first_1 = -1, last_1 = -1;
     
        // Compute the binary representation
        while (N != 0)
        {
            count++;
     
            int r = N & 1;
     
            if (r == 1)
            {
                first_1 = first_1 == -1 ?
                                  count : first_1;
                last_1 = count;
            }
            N = N / 2;
        }
     
        // if N is a power of 2
        // then return -1
        if (last_1 <= first_1)
        {
            return -1;
        }
         
        // else find the distance
        // between the first position of 1
        // and last position of 1
        else
        {
            distance = (last_1 - first_1 - 1);
            return distance;
        }
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int N = 131;
        System.out.println(longest_gap(N));
     
        N = 8;
        System.out.println(longest_gap(N));
     
        N = 17;
        System.out.println(longest_gap(N));
     
        N = 33;
        System.out.println(longest_gap(N));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 program to find the
# Maximum distance between two 1's
# in Binary representation of N
def longest_gap(N):
 
    distance = 0
    count = 0
    first_1 = -1
    last_1 = -1
 
    # Compute the binary representation
    while (N > 0):
        count += 1
 
        r = N & 1
 
        if (r == 1):
            if first_1 == -1:
                first_1 = count
            else:
                first_1 = first_1
 
            last_1 = count
 
        N = N // 2
 
    # if N is a power of 2
    # then return -1
    if (last_1 <= first_1):
        return -1
         
    # else find the distance
    # between the first position of 1
    # and last position of 1
    else:
        distance = last_1 - first_1 - 1
        return distance
 
# Driver code
N = 131
print(longest_gap(N))
 
N = 8
print(longest_gap(N))
 
N = 17
print(longest_gap(N))
 
N = 33
print(longest_gap(N))
 
# This code is contributed by Mohit Kumar

C#




// C# program to find the
// Maximum distance between two 1's
// in Binary representation of N
using System;
 
class GFG
{
    static int longest_gap(int N)
    {
        int distance = 0, count = 0,
            first_1 = -1, last_1 = -1;
     
        // Compute the binary representation
        while (N != 0)
        {
            count++;
     
            int r = N & 1;
     
            if (r == 1)
            {
                first_1 = first_1 == -1 ?
                                  count : first_1;
                last_1 = count;
            }
            N = N / 2;
        }
     
        // if N is a power of 2
        // then return -1
        if (last_1 <= first_1)
        {
            return -1;
        }
         
        // else find the distance
        // between the first position of 1
        // and last position of 1
        else
        {
            distance = (last_1 - first_1 - 1);
            return distance;
        }
    }
     
    // Driver code
    public static void Main (String []args)
    {
        int N = 131;
        Console.WriteLine(longest_gap(N));
     
        N = 8;
        Console.WriteLine(longest_gap(N));
     
        N = 17;
        Console.WriteLine(longest_gap(N));
     
        N = 33;
        Console.WriteLine(longest_gap(N));
    }
}
 
// This code is contributed by Arnab Kundu

Javascript




<script>
// Javascript program to find the
// Maximum distance between two 1's
// in Binary representation of N
 
function longest_gap(N)
{
 
    let distance = 0, count = 0,
        first_1 = -1, last_1 = -1;
 
    // Compute the binary representation
    while (N) {
 
        count++;
 
        let r = N & 1;
 
        if (r == 1) {
            first_1 = first_1 == -1
                          ? count
                          : first_1;
            last_1 = count;
        }
 
        N = parseInt(N / 2);
    }
 
    // if N is a power of 2
    // then return -1
    if (last_1 <= first_1) {
        return -1;
    }
    // else find the distance
    // between the first position of 1
    // and last position of 1
    else {
        distance = (last_1 - first_1 - 1);
        return distance;
    }
}
 
// Driver code
    let N = 131;
    document.write(longest_gap(N) + "<br>");
 
    N = 8;
    document.write(longest_gap(N) + "<br>");
 
    N = 17;
    document.write(longest_gap(N) + "<br>");
 
    N = 33;
    document.write(longest_gap(N) + "<br>");
 
</script>
Output: 
6
-1
3
4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :