Skip to content
Related Articles

Related Articles

Improve Article

Maximum difference between groups of size two

  • Difficulty Level : Easy
  • Last Updated : 04 May, 2021

Given an array of even number of elements, form groups of 2 using these array elements such that the difference between the group with highest sum and the one with lowest sum is maximum.
Note: An element can be a part of one group only and it has to be a part of at least 1 group. 
Examples: 
 

Input : arr[] = {1, 4, 9, 6}
Output : 10
Groups formed will be (1, 4) and (6, 9), 
the difference between highest sum group
(6, 9) i.e 15 and lowest sum group (1, 4)
i.e 5 is 10.


Input : arr[] = {6, 7, 1, 11}
Output : 11
Groups formed will be (1, 6) and (7, 11), 
the difference between highest sum group
(7, 11) i.e 18 and lowest sum group (1, 6)
i.e 7 is 11.

 

Simple Approach: We can solve this problem by making all possible combinations and checking each set of combination differences between the group with the highest sum and with the lowest sum. A total of n*(n-1)/2 such groups would be formed (nC2). 
Time Complexity: O(n^3), because it will take O(n^2) to generate groups and to check against each group n iterations will be needed thus overall it takes O(n^3) time.
Efficient Approach: We can use the greedy approach. Sort the whole array and our result is sum of last two elements minus sum of first two elements.
 

C++




// CPP program to find minimum difference
// between groups of highest and lowest
// sums.
#include <bits/stdc++.h>
#define ll long long int
using namespace std;
 
ll CalculateMax(ll arr[], int n)
{
    // Sorting the whole array.
    sort(arr, arr + n);
    
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return abs(max_sum - min_sum);
}
 
// Driver code
int main()
{
    ll arr[] = { 6, 7, 1, 11 };
    int n = sizeof(arr) / sizeof(arr[0]);
    cout << CalculateMax(arr, n) << endl;
    return 0;
}

Java




// Java program to find minimum difference
// between groups of highest and lowest
// sums.
import java.util.Arrays;
import java.io.*;
 
class GFG {
static int  CalculateMax(int  arr[], int n)
{
    // Sorting the whole array.
    Arrays.sort(arr);
     
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return (Math.abs(max_sum - min_sum));
}
 
// Driver code
     
    public static void main (String[] args) {
 
    int arr[] = { 6, 7, 1, 11 };
    int n = arr.length;
    System.out.println (CalculateMax(arr, n));
    }
}

Python3




# Python 3 program to find minimum difference
# between groups of highest and lowest
def CalculateMax(arr, n):
 
    # Sorting the whole array.
    arr.sort()
    min_sum = arr[0] + arr[1]
    max_sum = arr[n - 1] + arr[n - 2]
    return abs(max_sum - min_sum)
 
# Driver code
arr = [6, 7, 1, 11]
n = len(arr)
print(CalculateMax(arr, n))
 
# This code is contributed
# by Shrikant13

C#




// C# program to find minimum difference
// between groups of highest and lowest
// sums.
using System;
 
public class GFG{
 
static int CalculateMax(int []arr, int n)
{
    // Sorting the whole array.
    Array.Sort(arr);
     
    int min_sum = arr[0] + arr[1];
    int max_sum = arr[n-1] + arr[n-2];
 
    return (Math.Abs(max_sum - min_sum));
}
 
// Driver code
     
    static public void Main (){
    int []arr = { 6, 7, 1, 11 };
    int n = arr.Length;
    Console.WriteLine(CalculateMax(arr, n));
    }
//This code is contributed by Sachin.   
}

PHP




<?php
// PHP program to find minimum
// difference between groups of
// highest and lowest sums.
function CalculateMax($arr, $n)
{
    // Sorting the whole array.
    sort($arr);
     
    $min_sum = $arr[0] +
               $arr[1];
    $max_sum = $arr[$n - 1] +
               $arr[$n - 2];
 
    return abs($max_sum -
               $min_sum);
}
 
// Driver code
$arr = array (6, 7, 1, 11 );
$n = sizeof($arr);
echo CalculateMax($arr, $n), "\n" ;
 
// This code is contributed by ajit
?>

Javascript




<script>
 
    // Javascript program to
    // find minimum difference
    // between groups of highest and lowest
    // sums.
     
    function CalculateMax(arr, n)
    {
        // Sorting the whole array.
        arr.sort(function(a, b){return a - b});
 
        let min_sum = arr[0] + arr[1];
        let max_sum = arr[n-1] + arr[n-2];
 
        return (Math.abs(max_sum - min_sum));
    }
     
    let arr = [ 6, 7, 1, 11 ];
    let n = arr.length;
    document.write(CalculateMax(arr, n));
         
</script>

Output:  

11

Time Complexity: O (n * log n)
Further Optimization : 
Instead of sorting, we can find a maximum two and minimum of two in linear time and reduce the time complexity to O(n). 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :