Skip to content
Related Articles

Related Articles

Improve Article

Maximum decimal equivalent possible among all connected components of a Binary Valued Graph

  • Last Updated : 13 Aug, 2021

Given a binary-valued Undirected Graph with V vertices and E edges, the task is to find the maximum decimal equivalent among all the connected components of the graph. A binary-valued graph can be considered as having only binary numbers (0 or 1) as the vertex values.

Examples: 

Input: E = 4, V = 7 

Output:
Explanation: 
Decimal equivalents of the connected components are as follows: 
[0, 1] : Maximum possible decimal equivalent = 2 [(10)2
[0, 0, 0] : Maximum possible decimal equivalent = 2 
[1, 1] : Maximum possible decimal equivalent = 3 
Hence, Maximum decimal equivalent of all components = 3



Input: E = 6, V = 10  

Output:
Explanation: 
Connected Components and decimal equivalent are as follows: 
[1] : Maximum possible decimal equivalent = 2 
[0, 0, 1, 0] : Maximum possible decimal equivalent = 8 [(1000)2
[1, 1, 0] : Maximum possible decimal equivalent = 6 
[1, 0] : Maximum possible decimal equivalent = 2 
Hence, Maximum decimal equivalent of all components = 8
 

Approach: 

  • The idea is to use Depth First Search Traversal to keep track of the connected components in the undirected graph as explained in this article.
  • For each connected component, the binary string is stored and the equivalent decimal value is calculated.
  • A global maximum is set that is compared to the maximum decimal equivalent obtained after every iteration to get the final result.

Below is the implementation of the above approach:

C++




// C++ Program to find
// maximum decimal equivalent among
// all connected components
 
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to traverse the undirected
// graph using the Depth first traversal
void depthFirst(int v, vector<int> graph[],
                vector<bool>& visited,
                vector<int>& storeChain)
{
    // Marking the visited
    // vertex as true
    visited[v] = true;
 
    // Store the connected chain
    storeChain.push_back(v);
 
    for (auto i : graph[v]) {
        if (visited[i] == false) {
 
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph,
                       visited, storeChain);
        }
    }
}
 
// Function to return decimal
// equivalent of each connected
// component
int decimal(int arr[], int n)
{
    int zeros = 0, ones = 0;
 
    // Storing the respective
    // counts of 1's and 0's
    for (int i = 0; i < n; i++) {
        if (arr[i] == 0)
            zeros++;
        else
            ones++;
    }
 
    // If all are zero then
    // maximum decimal equivalent
    // is also zero
    if (zeros == n)
        return 0;
 
    int temp = n - ones;
    int dec = 0;
 
    // For all the 1's, calculate
    // the decimal equivalent by
    // appropriate multiplication
    // of power of 2's
    while (ones--) {
        dec += pow(2, temp);
        temp++;
    }
    return dec;
}
 
// Function to find the maximum
// decimal equivalent among all
// connected components
void decimalValue(
    vector<int> graph[], int vertices,
    vector<int> values)
{
    // Initializing boolean array
    // to mark visited vertices
    vector<bool> visited(10001, false);
 
    // maxDeci stores the
    // maximum decimal value
    int maxDeci = INT_MIN;
 
    // Following loop invokes
    // DFS algorithm
    for (int i = 1; i <= vertices; i++) {
        if (visited[i] == false) {
 
            // Variable to hold
            // temporary length
            int sizeChain;
 
            // Variable to hold temporary
            // Decimal values
            int tempDeci;
 
            // Container to store
            // each chain
            vector<int> storeChain;
 
            // DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
 
            // Variable to hold each
            // chain size
            sizeChain = storeChain.size();
 
            // Container to store values
            // of vertices of individual
            // chains
            int chainValues[sizeChain + 1];
 
            // Storing the values of
            // each chain
            for (int i = 0; i < sizeChain; i++) {
                int temp = values[storeChain[i] - 1];
                chainValues[i] = temp;
            }
 
            // Function call to find
            // decimal equivalent
            tempDeci = decimal(chainValues,
                               sizeChain);
 
            // Conditional to store maximum
            // value of decimal equivalent
            if (tempDeci > maxDeci) {
                maxDeci = tempDeci;
            }
        }
    }
 
    // Printing the decimal result
    // (global maxima)
 
    cout << maxDeci;
}
 
// Driver code
int main()
{
    // Initializing graph in the
    // form of adjacency list
    vector<int> graph[1001];
 
    // Defining the number of
    // edges and vertices
    int E, V;
    E = 4;
    V = 7;
 
    // Assigning the values
    // for each vertex of the
    // undirected graph
    vector<int> values;
    values.push_back(0);
    values.push_back(1);
    values.push_back(0);
    values.push_back(0);
    values.push_back(0);
    values.push_back(1);
    values.push_back(1);
 
    // Constructing the
    // undirected graph
    graph[1].push_back(2);
    graph[2].push_back(1);
    graph[3].push_back(4);
    graph[4].push_back(3);
    graph[4].push_back(5);
    graph[5].push_back(4);
    graph[6].push_back(7);
    graph[7].push_back(6);
 
    decimalValue(graph, V, values);
    return 0;
}

Java




// Java program to find maximum
// decimal equivalent among all
// connected components
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to traverse the undirected
// graph using the Depth first traversal
static void depthFirst(int v,
                       List<List<Integer>> graph,
                       boolean[] visited,
                       List<Integer> storeChain)
{
     
    // Marking the visited
    // vertex as true
    visited[v] = true;
 
    // Store the connected chain
    storeChain.add(v);
 
    for(int i : graph.get(v))
    {
        if (visited[i] == false)
        {
             
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
        }
    }
}
 
// Function to return decimal
// equivalent of each connected
// component
static int decimal(int arr[], int n)
{
    int zeros = 0, ones = 0;
 
    // Storing the respective
    // counts of 1's and 0's
    for(int i = 0; i < n; i++)
    {
        if (arr[i] == 0)
            zeros++;
        else
            ones++;
    }
 
    // If all are zero then maximum
    // decimal equivalent is also zero
    if (zeros == n)
        return 0;
 
    int temp = n - ones;
    int dec = 0;
     
    // For all the 1's, calculate
    // the decimal equivalent by
    // appropriate multiplication
    // of power of 2's
    while (ones > 0)
    {
        dec += Math.pow(2, temp);
        temp++;
        ones--;
    }
    return dec;
}
 
// Function to find the maximum
// decimal equivalent among all
// connected components
static void decimalValue(List<List<Integer>> graph,
                         int vertices,
                         List<Integer> values)
{
     
    // Initializing boolean array
    // to mark visited vertices
    boolean[] visited = new boolean[10001];
 
    // maxDeci stores the
    // maximum decimal value
    int maxDeci = Integer.MIN_VALUE;
 
    // Following loop invokes
    // DFS algorithm
    for(int i = 1; i <= vertices; i++)
    {
        if (visited[i] == false)
        {
             
            // Variable to hold
            // temporary length
            int sizeChain;
 
            // Variable to hold temporary
            // Decimal values
            int tempDeci;
 
            // Container to store
            // each chain
            List<Integer> storeChain = new ArrayList<Integer>();
 
            // DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
 
            // Variable to hold each
            // chain size
            sizeChain = storeChain.size();
 
            // Container to store values
            // of vertices of individual
            // chains
            int[] chainValues = new int[sizeChain + 1];
 
            // Storing the values of
            // each chain
            for(int j = 0; j < sizeChain; j++)
            {
                int temp = values.get(
                    storeChain.get(j) - 1);
                chainValues[j] = temp;
            }
             
            // Function call to find
            // decimal equivalent
            tempDeci = decimal(chainValues,
                               sizeChain);
 
            // Conditional to store maximum
            // value of decimal equivalent
            if (tempDeci > maxDeci)
            {
                maxDeci = tempDeci;
            }
        }
    }
 
    // Printing the decimal result
    // (global maxima)
    System.out.println(maxDeci);
}
 
// Driver code
public static void main(String[] args)
{
     
    // Initializing graph in the
    // form of adjacency list
    @SuppressWarnings("unchecked")
    List<List<Integer>> graph = new ArrayList();
 
    for(int i = 0; i < 1001; i++)
        graph.add(new ArrayList<Integer>());
 
    // Defining the number
    // of edges and vertices
    int E = 4, V = 7;
 
    // Assigning the values for each
    // vertex of the undirected graph
    List<Integer> values = new ArrayList<Integer>();
    values.add(0);
    values.add(1);
    values.add(0);
    values.add(0);
    values.add(0);
    values.add(1);
    values.add(1);
 
    // Constructing the
    // undirected graph
    graph.get(1).add(2);
    graph.get(2).add(1);
    graph.get(3).add(4);
    graph.get(4).add(3);
    graph.get(4).add(5);
    graph.get(5).add(4);
    graph.get(6).add(7);
    graph.get(7).add(6);
 
    decimalValue(graph, V, values);
}
}
 
// This code is contributed by jithin

Python3




# Python3 Program to find
# maximum decimal equivalent among
# all connected components
import sys
  
# Function to traverse the
# undirected graph using
# the Depth first traversal
def depthFirst(v, graph,
               visited,
               storeChain):
 
    # Marking the visited
    # vertex as true
    visited[v] = True;
  
    # Store the connected chain
    storeChain.append(v);
     
    for i in graph[v]:
        if (visited[i] == False):
  
            # Recursive call to
            # the DFS algorithm
            depthFirst(i, graph,
                       visited,
                       storeChain);       
  
# Function to return decimal
# equivalent of each connected
# component
def decimal(arr, n):
 
    zeros = 0
    ones = 0
  
    # Storing the respective
    # counts of 1's and 0's
    for i in range(n):
 
        if (arr[i] == 0):
            zeros+=1;
        else:
            ones += 1;   
  
    # If all are zero then
    # maximum decimal equivalent
    # is also zero
    if (zeros == n):
        return 0;
  
    temp = n - ones;
    dec = 0;
  
    # For all the 1's, calculate
    # the decimal equivalent by
    # appropriate multiplication
    # of power of 2's
    while (ones != 0):
        ones -= 1
        dec += pow(2, temp);
        temp += 1;
     
    return dec;
  
# Function to find the maximum
# decimal equivalent among all
# connected components
def decimalValue(graph,
                 vertices, values):
 
    # Initializing boolean array
    # to mark visited vertices
    visited = [False for i in range(10001)]
  
    # maxDeci stores the
    # maximum decimal value
    maxDeci = -sys.maxsize;
  
    # Following loop invokes
    # DFS algorithm
    for i in range(vertices + 1):
 
        if (visited[i] == False):
  
            # Variable to hold
            # temporary length
            sizeChain = 0;
  
            # Variable to hold
            # temporary Decimal values
            tempDeci = 0;
  
            # Container to store
            # each chain
            storeChain = [];
  
            # DFS algorithm
            depthFirst(i, graph,
                       visited,
                       storeChain);
  
            # Variable to hold each
            # chain size
            sizeChain = len(storeChain)
  
            # Container to store values
            # of vertices of individual
            # chains
            chainValues = [0 for i in range(sizeChain + 1)]
  
            # Storing the values of
            # each chain
            for i in range(sizeChain):           
                temp = values[storeChain[i] - 1];
                chainValues[i] = temp;           
  
            # Function call to find
            # decimal equivalent
            tempDeci = decimal(chainValues,
                               sizeChain);
  
            # Conditional to store maximum
            # value of decimal equivalent
            if (tempDeci > maxDeci):
                maxDeci = tempDeci;           
  
    # Printing the decimal result
    # (global maxima)
    print(maxDeci)
 
if __name__ == "__main__":
     
    # Initializing graph in the
    # form of adjacency list
    graph = [[] for i in range(1001)]
  
    # Defining the number
    # of edges and vertices
    E = 4;
    V = 7;
  
    # Assigning the values
    # for each vertex of
    # the undirected graph
    values = [];
    values.append(0);
    values.append(1);
    values.append(0);
    values.append(0);
    values.append(0);
    values.append(1);
    values.append(1);
  
    # Constructing the
    # undirected graph
    graph[1].append(2);
    graph[2].append(1);
    graph[3].append(4);
    graph[4].append(3);
    graph[4].append(5);
    graph[5].append(4);
    graph[6].append(7);
    graph[7].append(6);
  
    decimalValue(graph, V, values);
     
# This code is contributed by rutvik_56

C#




// C# program to find maximum
// decimal equivalent among all
// connected components
using System;
using System.Collections;
using System.Collections.Generic;
  
class GFG{
  
// Function to traverse the undirected
// graph using the Depth first traversal
static void depthFirst(int v,
                       ArrayList graph,
                       bool[] visited,
                       ArrayList storeChain)
{
     
    // Marking the visited
    // vertex as true
    visited[v] = true;
  
    // Store the connected chain
    storeChain.Add(v);
  
    foreach(int i in (ArrayList)graph[v])
    {
        if (visited[i] == false)
        {
             
            // Recursive call to
            // the DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
        }
    }
}
  
// Function to return decimal_t
// equivalent of each connected
// component
static int decimal_t(int []arr, int n)
{
    int zeros = 0, ones = 0;
  
    // Storing the respective
    // counts of 1's and 0's
    for(int i = 0; i < n; i++)
    {
        if (arr[i] == 0)
            zeros++;
        else
            ones++;
    }
  
    // If all are zero then maximum
    // decimal_t equivalent is also zero
    if (zeros == n)
        return 0;
  
    int temp = n - ones;
    int dec = 0;
      
    // For all the 1's, calculate
    // the decimal_t equivalent by
    // appropriate multiplication
    // of power of 2's
    while (ones > 0)
    {
        dec += (int)Math.Pow(2, temp);
        temp++;
        ones--;
    }
    return dec;
}
  
// Function to find the maximum
// decimal_t equivalent among all
// connected components
static void decimal_tValue(ArrayList graph,
                           int vertices,
                           ArrayList values)
{
     
    // Initializing boolean array
    // to mark visited vertices
    bool[] visited = new bool[10001];
  
    // maxDeci stores the
    // maximum decimal_t value
    int maxDeci = -100000000;
  
    // Following loop invokes
    // DFS algorithm
    for(int i = 1; i <= vertices; i++)
    {
        if (visited[i] == false)
        {
             
            // Variable to hold
            // temporary length
            int sizeChain;
  
            // Variable to hold temporary
            // decimal_t values
            int tempDeci;
  
            // Container to store
            // each chain
            ArrayList storeChain = new ArrayList();
  
            // DFS algorithm
            depthFirst(i, graph, visited,
                       storeChain);
  
            // Variable to hold each
            // chain size
            sizeChain = storeChain.Count;
  
            // Container to store values
            // of vertices of individual
            // chains
            int[] chainValues = new int[sizeChain + 1];
  
            // Storing the values of
            // each chain
            for(int j = 0; j < sizeChain; j++)
            {
                int temp = (int)values[(int)storeChain[j] - 1];
                chainValues[j] = temp;
            }
              
            // Function call to find
            // decimal_t equivalent
            tempDeci = decimal_t(chainValues, sizeChain);
  
            // Conditional to store maximum
            // value of decimal_t equivalent
            if (tempDeci > maxDeci)
            {
                maxDeci = tempDeci;
            }
        }
    }
  
    // Printing the decimal_t result
    // (global maxima)
    Console.WriteLine(maxDeci);
}
  
// Driver code
public static void Main(string[] args)
{
     
    // Initializing graph in the
    // form of adjacency list
    ArrayList graph = new ArrayList();
    for(int i = 0; i < 1001; i++)
        graph.Add(new ArrayList());
  
    // Defining the number
    // of edges and vertices
    int V = 7;
  
    // Assigning the values for each
    // vertex of the undirected graph
    ArrayList values = new ArrayList();
    values.Add(0);
    values.Add(1);
    values.Add(0);
    values.Add(0);
    values.Add(0);
    values.Add(1);
    values.Add(1);
  
    // Constructing the
    // undirected graph
    ((ArrayList)graph[1]).Add(2);
    ((ArrayList)graph[2]).Add(1);
    ((ArrayList)graph[3]).Add(4);
    ((ArrayList)graph[4]).Add(3);
    ((ArrayList)graph[4]).Add(5);
    ((ArrayList)graph[5]).Add(4);
    ((ArrayList)graph[6]).Add(7);
    ((ArrayList)graph[7]).Add(6);
  
    decimal_tValue(graph, V, values);
}
}
 
// This code is contributed by pratham76
Output: 
3

 

Complexity analysis: 
Time Complexity: O(V2
The DFS algorithm takes O(V + E) time to run, where V, E are the vertices and edges of the undirected graph. Further, the decimal equivalent is found at each iteration that takes an additional O(V) to compute and return the result. Hence, the overall complexity is O(V2) 
Auxiliary Space: O(V) 
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :