# Maximum contiguous decreasing sequence obtained by removing any one element

Given an array arr[] of N integers. The task is to find the length of the contiguous strictly decreasing sequence that can be derieved after removing at most one element from the array arr[].

Examples

Input: arr[] = {8, 7, 3, 5, 2, 9}
Output: 4
Explanation:
If we remove 3, The maximum length of decreasing sequence is 4 and the sequence is { 8, 7, 5, 2 }
If we remove 5, The maximum length of decreasing sequence is 4 and the sequence is { 8, 7, 3, 2 }
In both removal we get 4 as the maximum length.

Input: arr[] = {1, 2, 9, 8, 3, 7, 6, 4}
Output: 5

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• Create two arrays, left[] which stores the length of decreasing sequence from left to right and right[] which stores the length of decreasing sequence from right to left.
• Traverse the given array arr[].
• If previous element(arr[i-1]) is greater than the next element(arr[i+1]), then check whether removing that element will give the maximum length of decreasing subsequence or not.
• Update the maximum length of decreasing subsequence.

Below is the implementation of the above approach:

## C++

 `// C++ program to find maximum length ` `// of decreasing sequence by removing ` `// at most one element ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the maximum length ` `int` `maxLength(``int``* a, ``int` `n) ` `{ ` `    ``// Intialise maximum length to 1 ` `    ``int` `maximum = 1; ` ` `  `    ``// Intialise left[] to find the ` `    ``// length of decreasing sequence ` `    ``// from left to right ` `    ``int` `left[n]; ` ` `  `    ``// Intialise right[] to find the ` `    ``// length of decreasing sequence ` `    ``// from right to left ` `    ``int` `right[n]; ` ` `  `    ``// Initially store 1 at each index of ` `    ``// left and right array ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``left[i] = 1; ` `        ``right[i] = 1; ` `    ``} ` ` `  `    ``// Iterate over the array arr[] to ` `    ``// store length of decreasing ` `    ``// sequence that can be obtained ` `    ``// at every index in the right array ` `    ``for` `(``int` `i = n - 2; i >= 0; i--) { ` ` `  `        ``if` `(a[i] > a[i + 1]) { ` `            ``right[i] = right[i + 1] + 1; ` `        ``} ` ` `  `        ``// Store the length of longest ` `        ``// continuous decreasing ` `        ``// sequence in maximum ` `        ``maximum = max(maximum, right[i]); ` `    ``} ` ` `  `    ``// Iterate over the array arr[] to ` `    ``// store length of decreasing ` `    ``// sequence that can be obtained ` `    ``// at every index in the left array ` `    ``for` `(``int` `i = 1; i < n; i++) { ` `        ``if` `(a[i] < a[i - 1]) { ` `            ``left[i] = left[i - 1] + 1; ` `        ``} ` `    ``} ` ` `  `    ``if` `(n > 2) { ` `        ``// Check if we can obtain a ` `        ``// longer decreasing sequence ` `        ``// after removal of any element ` `        ``// from the array arr[] with ` `        ``// the help of left[] & right[] ` `        ``for` `(``int` `i = 1; i < n - 1; i++) { ` `            ``if` `(a[i - 1] > a[i + 1]) { ` `                ``maximum = max(maximum, ` `                              ``left[i - 1] + right[i + 1]); ` `            ``} ` `        ``} ` `    ``} ` ` `  `    ``// Return maximum length of sequence ` `    ``return` `maximum; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[6] = { 8, 7, 3, 5, 2, 9 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr[0]); ` ` `  `    ``// Function calling ` `    ``cout << maxLength(arr, n) << endl; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find maximum length  ` `// of decreasing sequence by removing  ` `// at most one element  ` `class` `GFG { ` `     `  `    ``// Function to find the maximum length  ` `    ``static` `int` `maxLength(``int` `[]a, ``int` `n)  ` `    ``{  ` `        ``// Intialise maximum length to 1  ` `        ``int` `maximum = ``1``;  ` `     `  `        ``// Intialise left[] to find the  ` `        ``// length of decreasing sequence  ` `        ``// from left to right  ` `        ``int` `left [] = ``new` `int``[n];  ` `     `  `        ``// Intialise right[] to find the  ` `        ``// length of decreasing sequence  ` `        ``// from right to left  ` `        ``int` `right[] = ``new` `int``[n];  ` `     `  `        ``// Initially store 1 at each index of  ` `        ``// left and right array  ` `        ``for` `(``int` `i = ``0``; i < n; i++) {  ` `            ``left[i] = ``1``;  ` `            ``right[i] = ``1``;  ` `        ``}  ` `     `  `        ``// Iterate over the array arr[] to  ` `        ``// store length of decreasing  ` `        ``// sequence that can be obtained  ` `        ``// at every index in the right array  ` `        ``for` `(``int` `i = n - ``2``; i >= ``0``; i--) {  ` `     `  `            ``if` `(a[i] > a[i + ``1``]) {  ` `                ``right[i] = right[i + ``1``] + ``1``;  ` `            ``}  ` `     `  `            ``// Store the length of longest  ` `            ``// continuous decreasing  ` `            ``// sequence in maximum  ` `            ``maximum = Math.max(maximum, right[i]);  ` `        ``}  ` `     `  `        ``// Iterate over the array arr[] to  ` `        ``// store length of decreasing  ` `        ``// sequence that can be obtained  ` `        ``// at every index in the left array  ` `        ``for` `(``int` `i = ``1``; i < n; i++) {  ` `            ``if` `(a[i] < a[i - ``1``]) {  ` `                ``left[i] = left[i - ``1``] + ``1``;  ` `            ``}  ` `        ``}  ` `     `  `        ``if` `(n > ``2``) {  ` `            ``// Check if we can obtain a  ` `            ``// longer decreasing sequence  ` `            ``// after removal of any element  ` `            ``// from the array arr[] with  ` `            ``// the help of left[] & right[]  ` `            ``for` `(``int` `i = ``1``; i < n - ``1``; i++) {  ` `                ``if` `(a[i - ``1``] > a[i + ``1``]) {  ` `                    ``maximum = Math.max(maximum, left[i - ``1``] + right[i + ``1``]);  ` `                ``}  ` `            ``}  ` `        ``}  ` `     `  `        ``// Return maximum length of sequence  ` `        ``return` `maximum;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``int` `arr[] = { ``8``, ``7``, ``3``, ``5``, ``2``, ``9` `};  ` `        ``int` `n = arr.length;  ` `     `  `        ``// Function calling  ` `        ``System.out.println(maxLength(arr, n));  ` `    ``}    ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 program to find maximum length  ` `# of decreasing sequence by removing  ` `# at most one element  ` ` `  `# Function to find the maximum length  ` `def` `maxLength(a, n) : ` ` `  `    ``# Intialise maximum length to 1  ` `    ``maximum ``=` `1``;  ` ` `  `    ``# Intialise left[] to find the  ` `    ``# length of decreasing sequence  ` `    ``# from left to right  ` `    ``left ``=` `[``0``]``*``n;  ` ` `  `    ``# Intialise right[] to find the  ` `    ``# length of decreasing sequence  ` `    ``# from right to left  ` `    ``right ``=` `[``0``]``*``n;  ` ` `  `    ``# Initially store 1 at each index of  ` `    ``# left and right array  ` `    ``for` `i ``in` `range``(n) : ` `        ``left[i] ``=` `1``;  ` `        ``right[i] ``=` `1``;  ` ` `  `    ``# Iterate over the array arr[] to  ` `    ``# store length of decreasing  ` `    ``# sequence that can be obtained  ` `    ``# at every index in the right array  ` `    ``for` `i ``in` `range``(n ``-` `2``, ``-``1``, ``-``1``) : ` ` `  `        ``if` `(a[i] > a[i ``+` `1``]) : ` `            ``right[i] ``=` `right[i ``+` `1``] ``+` `1``;  ` ` `  `        ``# Store the length of longest  ` `        ``# continuous decreasing  ` `        ``# sequence in maximum  ` `        ``maximum ``=` `max``(maximum, right[i]);  ` ` `  `    ``# Iterate over the array arr[] to  ` `    ``# store length of decreasing  ` `    ``# sequence that can be obtained  ` `    ``# at every index in the left array  ` `    ``for` `i ``in` `range``(``1``, n) : ` `        ``if` `(a[i] < a[i ``-` `1``]) : ` `            ``left[i] ``=` `left[i ``-` `1``] ``+` `1``;  ` ` `  `    ``if` `(n > ``2``) : ` `        ``# Check if we can obtain a  ` `        ``# longer decreasing sequence  ` `        ``# after removal of any element  ` `        ``# from the array arr[] with  ` `        ``# the help of left[] & right[]  ` `        ``for` `i ``in` `range``(``1``, n ``-``1``) : ` `            ``if` `(a[i ``-` `1``] > a[i ``+` `1``]) : ` `                ``maximum ``=` `max``(maximum, left[i ``-` `1``] ``+` `right[i ``+` `1``]); ` ` `  `    ``# Return maximum length of sequence  ` `    ``return` `maximum;  ` ` `  `# Driver code  ` `if` `__name__ ``=``=` `"__main__"` `:  ` ` `  `    ``arr ``=` `[ ``8``, ``7``, ``3``, ``5``, ``2``, ``9` `];  ` `    ``n ``=` `len``(arr);  ` ` `  `    ``# Function calling  ` `    ``print``(maxLength(arr, n));  ` ` `  `# This code is contributed by AnkitRai01 `

## C#

 `// C# program to find maximum length  ` `// of decreasing sequence by removing  ` `// at most one element  ` `using` `System; ` ` `  `class` `GFG { ` `     `  `    ``// Function to find the maximum length  ` `    ``static` `int` `maxLength(``int` `[]a, ``int` `n)  ` `    ``{  ` `        ``// Intialise maximum length to 1  ` `        ``int` `maximum = 1;  ` `     `  `        ``// Intialise left[] to find the  ` `        ``// length of decreasing sequence  ` `        ``// from left to right  ` `        ``int` `[]left = ``new` `int``[n];  ` `     `  `        ``// Intialise right[] to find the  ` `        ``// length of decreasing sequence  ` `        ``// from right to left  ` `        ``int` `[]right = ``new` `int``[n];  ` `     `  `        ``// Initially store 1 at each index of  ` `        ``// left and right array  ` `        ``for` `(``int` `i = 0; i < n; i++) {  ` `            ``left[i] = 1;  ` `            ``right[i] = 1;  ` `        ``}  ` `     `  `        ``// Iterate over the array arr[] to  ` `        ``// store length of decreasing  ` `        ``// sequence that can be obtained  ` `        ``// at every index in the right array  ` `        ``for` `(``int` `i = n - 2; i >= 0; i--) {  ` `     `  `            ``if` `(a[i] > a[i + 1]) {  ` `                ``right[i] = right[i + 1] + 1;  ` `            ``}  ` `     `  `            ``// Store the length of longest  ` `            ``// continuous decreasing  ` `            ``// sequence in maximum  ` `            ``maximum = Math.Max(maximum, right[i]);  ` `        ``}  ` `     `  `        ``// Iterate over the array arr[] to  ` `        ``// store length of decreasing  ` `        ``// sequence that can be obtained  ` `        ``// at every index in the left array  ` `        ``for` `(``int` `i = 1; i < n; i++) {  ` `            ``if` `(a[i] < a[i - 1]) {  ` `                ``left[i] = left[i - 1] + 1;  ` `            ``}  ` `        ``}  ` `     `  `        ``if` `(n > 2) {  ` `            ``// Check if we can obtain a  ` `            ``// longer decreasing sequence  ` `            ``// after removal of any element  ` `            ``// from the array arr[] with  ` `            ``// the help of left[] & right[]  ` `            ``for` `(``int` `i = 1; i < n - 1; i++) {  ` `                ``if` `(a[i - 1] > a[i + 1]) {  ` `                    ``maximum = Math.Max(maximum, left[i - 1] + right[i + 1]);  ` `                ``}  ` `            ``}  ` `        ``}  ` `     `  `        ``// Return maximum length of sequence  ` `        ``return` `maximum;  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main (String[] args)  ` `    ``{  ` `        ``int` `[]arr = { 8, 7, 3, 5, 2, 9 };  ` `        ``int` `n = arr.Length;  ` `     `  `        ``// Function calling  ` `        ``Console.WriteLine(maxLength(arr, n));  ` `    ``}    ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```4
```

Time Complexity: O(n)
Auxillary Space: O(n)

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : AnkitRai01