Given a circular array of size n, find the maximum subarray sum of the non-empty subarray.
Examples:
Input: arr[] = {8, -8, 9, -9, 10, -11, 12}
Output: 22
Explanation: Subarray 12, 8, -8, 9, -9, 10 gives the maximum sum, that is 22.
Input: arr[] = {10, -3, -4, 7, 6, 5, -4, -1}
Output: 23
Explanation: Subarray 7, 6, 5, -4, -1, 10 gives the maximum sum, that is 23.
Input: arr[] = {-1, 40, -14, 7, 6, 5, -4, -1}
Output: 52
Explanation: Subarray 7, 6, 5, -4, -1, -1, 40 gives the maximum sum, that is 52.
Maximum Circular Subarray Sum using Kadane’s Algorithm:
The idea is to modify Kadane’s algorithm to find a minimum contiguous subarray sum and the maximum contiguous subarray sum, then check for the maximum value between the max_value and the value left after subtracting min_value from the total sum.
Illustration:
Input: arr[] = {8, -8, 9, -9, 10, -11, 12}, N = 7
sum = 11
Initialise: curr_max = arr[0], max_so_far = arr[0], curr_min = arr[0], min_so_far = arr[0]
At i = 1:
- curr_max = max(curr_max + arr[1], arr[1]) = max(8 + (-8), -8) = 0
- max_so_far = max(max_so_far, curr_max) = max(8, 0) = 8
- curr_min = min(curr_min + a[1], a[1]) = min(8 + (-8), -8) = -8
- min_so_far = min(curr_min, min_so_far) = min(-8, 8) = -8
At i = 2:
- curr_max = max(curr_max + arr[2], arr[2]) = max(0 + 9, 9) = 9
- max_so_far = max(max_so_far, curr_max) = max(8, 9) = 9
- curr_min = min(curr_min + a[2], a[2]) = min(-8 + 9, 9) = 1
- min_so_far = min(curr_min, min_so_far) = min(1, -8) = -8
At i = 3:
- curr_max = max(curr_max + arr[3], arr[3]) = max(9 + (-9), -9) = 0
- max_so_far = max(max_so_far, curr_max) = max(9, 0) = 9
- curr_min = min(curr_min + a[3], a[3]) = min(1 + (-9), -9) = -9
- min_so_far = min(curr_min, min_so_far) = min(-9, -8) = -9
At i = 4:
- curr_max = max(curr_max + arr[4], arr[4]) = max(0 + 10, 10) = 10
- max_so_far = max(max_so_far, curr_max) = max(9, 10) = 10
- curr_min = min(curr_min + a[4], a[4]) = min(-9 + 10, 10) = 1
- min_so_far = min(curr_min, min_so_far) = min(1, -9) = -9
At i = 5:
- curr_max = max(curr_max + arr[5], arr[5]) = max(10 + (-11), -11) = -1
- max_so_far = max(max_so_far, curr_max) = max(10, -1) = 10
- curr_min = min(curr_min + a[5], a[5]) = min(1 + (-11), -11) = -11
- min_so_far = min(curr_min, min_so_far) = min(-11, -9) = -11
At i = 6:
- curr_max = max(curr_max + arr[6], arr[6]) = max(-1 + 12, 12) = 12
- max_so_far = max(max_so_far, curr_max) = max(10, 12) = 12
- curr_min = min(curr_min + a[6], a[6]) = min(-11+ 12, 12) = 1
- min_so_far = min(curr_min, min_so_far) = min(1, -11) = -11
ans = max(max_so_far, sum – min_so_far) = (12, 11 – (-11)) = 22
Hence, maximum circular subarray sum is 22
Follow the steps below to solve the given problem:
- We will calculate the total sum of the given array.
- We will declare the variable curr_max, max_so_far, curr_min, min_so_far as the first value of the array.
- Now we will use Kadane’s Algorithm to find the maximum subarray sum and minimum subarray sum.
- Check for all the values in the array:-
- If min_so_far is equaled to sum, i.e. all values are negative, then we return max_so_far.
- Else, we will calculate the maximum value of max_so_far and (sum – min_so_far) and return it.
Below is the implementation of above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maxCircularSum( int a[], int n)
{
if (n == 1)
return a[0];
int sum = 0;
for ( int i = 0; i < n; i++) {
sum += a[i];
}
int curr_max = a[0], max_so_far = a[0], curr_min = a[0], min_so_far = a[0];
for ( int i = 1; i < n; i++) {
curr_max = max(curr_max + a[i], a[i]);
max_so_far = max(max_so_far, curr_max);
curr_min = min(curr_min + a[i], a[i]);
min_so_far = min(min_so_far, curr_min);
}
if (min_so_far == sum)
return max_so_far;
return max(max_so_far, sum - min_so_far);
}
int main()
{
int a[] = { 11, 10, -20, 5, -3, -5, 8, -13, 10 };
int n = sizeof (a) / sizeof (a[0]);
cout << "Maximum circular sum is " << maxCircularSum(a, n) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG {
public static int maxCircularSum( int a[], int n)
{
if (n == 1 )
return a[ 0 ];
int sum = 0 ;
for ( int i = 0 ; i < n; i++) {
sum += a[i];
}
int curr_max = a[ 0 ], max_so_far = a[ 0 ],
curr_min = a[ 0 ], min_so_far = a[ 0 ];
for ( int i = 1 ; i < n; i++)
{
curr_max = Math.max(curr_max + a[i], a[i]);
max_so_far = Math.max(max_so_far, curr_max);
curr_min = Math.min(curr_min + a[i], a[i]);
min_so_far = Math.min(min_so_far, curr_min);
}
if (min_so_far == sum) {
return max_so_far;
}
return Math.max(max_so_far, sum - min_so_far);
}
public static void main(String[] args)
{
int a[] = { 11 , 10 , - 20 , 5 , - 3 , - 5 , 8 , - 13 , 10 };
int n = 9 ;
System.out.println( "Maximum circular sum is "
+ maxCircularSum(a, n));
}
}
|
Python3
def maxCircularSum(a, n):
if (n = = 1 ):
return a[ 0 ]
sum = 0
for i in range (n):
sum + = a[i]
curr_max = a[ 0 ]
max_so_far = a[ 0 ]
curr_min = a[ 0 ]
min_so_far = a[ 0 ]
for i in range ( 1 , n):
curr_max = max (curr_max + a[i], a[i])
max_so_far = max (max_so_far, curr_max)
curr_min = min (curr_min + a[i], a[i])
min_so_far = min (min_so_far, curr_min)
if (min_so_far = = sum ):
return max_so_far
return max (max_so_far, sum - min_so_far)
a = [ 11 , 10 , - 20 , 5 , - 3 , - 5 , 8 , - 13 , 10 ]
n = len (a)
print ( "Maximum circular sum is" , maxCircularSum(a, n))
|
C#
using System;
class GFG
{
public static int maxCircularSum( int [] a, int n)
{
if (n == 1)
return a[0];
int sum = 0;
for ( int i = 0; i < n; i++)
{
sum += a[i];
}
int curr_max = a[0], max_so_far = a[0],
curr_min = a[0], min_so_far = a[0];
for ( int i = 1; i < n; i++)
{
curr_max = Math.Max(curr_max + a[i], a[i]);
max_so_far = Math.Max(max_so_far, curr_max);
curr_min = Math.Min(curr_min + a[i], a[i]);
min_so_far = Math.Min(min_so_far, curr_min);
}
if (min_so_far == sum)
{
return max_so_far;
}
return Math.Max(max_so_far, sum - min_so_far);
}
public static void Main()
{
int [] a = { 11, 10, -20, 5, -3, -5, 8, -13, 10 };
int n = 9;
Console.WriteLine( "Maximum circular sum is "
+ maxCircularSum(a, n));
}
}
|
Javascript
<script>
function maxCircularSum(a, n) {
if (n == 1)
return a[0];
let sum = 0;
for (let i = 0; i < n; i++) {
sum += a[i];
}
let curr_max = a[0], max_so_far = a[0], curr_min = a[0], min_so_far = a[0];
for (let i = 1; i < n; i++) {
curr_max = Math.max(curr_max + a[i], a[i]);
max_so_far = Math.max(max_so_far, curr_max);
curr_min = Math.min(curr_min + a[i], a[i]);
min_so_far = Math.min(min_so_far, curr_min);
}
if (min_so_far == sum)
return max_so_far;
return Math.max(max_so_far, sum - min_so_far);
}
let a = [11, 10, -20, 5, -3, -5, 8, -13, 10];
let n = a.length;
document.write( "Maximum circular sum is " + maxCircularSum(a, n));
</script>
|
OutputMaximum circular sum is 31
Time Complexity: O(n), where n is the number of elements in the input array. Linear traversal of the array is needed.
Auxiliary Space: O(1), No extra space is required.