# Maximum contiguous 1 possible in a binary string after k rotations

• Difficulty Level : Medium
• Last Updated : 06 Feb, 2023

Given a binary string, you can rotate any substring of this string. For Example, let string be denoted by s. Let the first element of string be represented by s[0], second element be represented by s[1] and so on. s = “100110111” Suppose, we rotate the substring starting from s[2] and ending at s[4]. Then the string after this operation will be: Resultant String = “101100111” Now, you are allowed to do at most k operations to rotate any substring. You have to tell the maximum number of contiguous 1 you can make in this string in k or less than k rotations of substring.

Examples:

Input : 100011001 k = 1
Output :
Explanation: k is 1, hence you can rotate only once. Rotate the substring starting from s[1] and ending at s[5].
The resultant string will be : 111000001. Hence, maximum contiguous 1 are 3.

Input : 001100111000110011100 k = 2
Output :
Explanation: k is 2, hence you can rotate twice. Rotate the substring starting at s[6] and ending at s[15].
Resultant string after first rotation : 001100001100011111100.
Then, rotate the substring starting at s[8] and ending at s[12].
Resultant string after second rotation : 001100000001111111100. Hence, maximum number of contiguous 1 are 8.

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Concept For Solving:

In order to solve this problem, we will maintain the frequency of 1’s in a portion of contiguous 1’s in the original string in a multiset. Then on each rotation, we will rotate that substring such that, 2 portions of contiguous 1(with maximum frequency) in the string come together. We will do this, by sorting the multiset from greatest to the smallest element.

We will take out the top 2 elements of the multiset and insert their sum back into the multiset. We will continue to do this until k rotations are completed or the number of elements in the multiset is reduced to 1.

Implementation:

## CPP

 `// C++ program to calculate maximum contiguous``// ones in string``#include ``using` `namespace` `std;` `// function to calculate maximum contiguous ones``int` `maxContiguousOnes(string s, ``int` `k)``{` `    ``int` `i, j, a, b, count;` `    ``// multiset is used to store frequency of``    ``// 1's of each portion of contiguous 1 in``    ``// string in decreasing order``    ``multiset<``int``, greater<``int``> > m;` `    ``// this loop calculate all the frequency``    ``// and stores them in multiset``    ``for` `(i = 0; i < s.length(); i++) {``        ``if` `(s[i] == ``'1'``) {``            ``count = 0;``            ``j = i;``            ``while` `(s[j] == ``'1'` `&& j < s.length()) {``                ``count++;``                ``j++;``            ``}``            ``m.insert(count);``            ``i = j - 1;``        ``}``    ``}` `    ``// if there is no 1 in string, then return 0``    ``if` `(m.size() == 0)``        ``return` `0;` `    ``// calculates maximum contiguous 1's on``    ``// doing rotations``    ``while` `(k > 0 && m.size() != 1) {` `        ``// Delete largest two elements``        ``a = *(m.begin());``        ``m.erase(m.begin());``        ``b = *(m.begin());``        ``m.erase(m.begin());` `        ``// insert their sum back into the multiset``        ``m.insert(a + b);``        ``k--;``    ``}` `    ``// return maximum contiguous ones``    ``// possible after k rotations``    ``return` `*(m.begin());``}` `// Driver code``int` `main()``{``    ``string s = ``"10011110011"``;``    ``int` `k = 1;``    ``cout << maxContiguousOnes(s, k);``    ``return` `0;``}`

## Java

 `import` `java.util.Collections;``import` `java.util.TreeSet;` `public` `class` `Main {``    ``// function to calculate maximum contiguous ones``    ``public` `static` `int` `maxContiguousOnes(String s, ``int` `k)``    ``{``        ``int` `i, j, a, b, count;` `        ``TreeSet m``            ``= ``new` `TreeSet<>(Collections.reverseOrder());` `        ``// this loop calculate all the frequency``        ``// and stores them in TreeSet``        ``for` `(i = ``0``; i < s.length();) {``            ``if` `(s.charAt(i) == ``'1'``) {``                ``count = ``0``;``                ``j = i;``                ``while` `(j < s.length()``                       ``&& s.charAt(j) == ``'1'``) {``                    ``count++;``                    ``j++;``                ``}``                ``m.add(count);``                ``i = j;``            ``}``            ``else` `{``                ``i++;``            ``}``        ``}` `        ``if` `(m.size() == ``0``)``            ``return` `0``;` `        ``while` `(k > ``0` `&& m.size() != ``1``) {``            ``a = m.first();``            ``m.remove(a);``            ``b = m.first();``            ``m.remove(b);``            ``m.add(a + b);``            ``k--;``        ``}` `        ``return` `m.first();``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``String s = ``"10011110011"``;``        ``int` `k = ``1``;``        ``System.out.println(maxContiguousOnes(s, k));``    ``}``} ``// this code is contributed by devendrasalunke`

Output

`6`

My Personal Notes arrow_drop_up