Maximum Bitwise XOR of node values of an Acyclic Graph made up of N given vertices using M edges
Given N nodes valued by [1, N], an array arr[] consisting of N positive integers such that the ith node ( 1-based indexing ) has the value arr[i] and an integer M, the task is to find the maximum Bitwise XOR of node values of an acyclic graph formed by M edges.
Examples:
Input: arr[]= {1, 2, 3, 4}, M = 2
Output: 7
Explanation:
Acyclic graphs having M(= 2) edges can be formed by vertices as:
- {1, 2, 3}: The value of the Bitwise XOR of vertices is 1^2^3 = 0.
- {2, 3, 4}: The value of the Bitwise XOR of vertices is 2^3^4 = 5.
- {1, 2, 4}: The value of the Bitwise XOR of vertices is 1^2^4 = 7.
- {1, 4, 3}: The value of the Bitwise XOR of vertices is 1^4^3 = 6.
Therefore, the maximum Bitwise XOR among all possible acyclic graphs is 7.
Input: arr[] = {2, 4, 8, 16}, M = 2
Output: 28
Approach: The given problem can be solved by using the fact that an acyclic graph having M edges must have (M + 1) vertices. Therefore, the task is reduced to finding the maximum Bitwise XOR of a subset of the array arr[] having (M + 1) vertices. Follow the steps below to solve the problem:
- Initialize a variable, say maxAns as 0 that stores the maximum Bitwise XOR of an acyclic graph having M edges.
- Generate all possible subsets of the array arr[] and for each subset find the Bitwise XOR of the elements of the subset and update the value of maxAns to the maximum of maxAns and Bitwise XOR.
- After completing the above steps, print the value of maxAns as the result.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function to find the maximum Bitwise // XOR of any subset of the array of size K int maximumXOR( int arr[], int n, int K) { // Number of node must K + 1 for // K edges K++; // Stores the maximum Bitwise XOR int maxXor = INT_MIN; // Generate all subsets of the array for ( int i = 0; i < (1 << n); i++) { // __builtin_popcount() returns // the number of sets bits in // an integer if (__builtin_popcount(i) == K) { // Initialize current xor as 0 int cur_xor = 0; for ( int j = 0; j < n; j++) { // If jth bit is set in i // then include jth element // in the current xor if (i & (1 << j)) cur_xor = cur_xor ^ arr[j]; } // Update the maximum Bitwise // XOR obtained so far maxXor = max(maxXor, cur_xor); } } // Return the maximum XOR return maxXor; } // Driver Code int main() { int arr[] = { 1, 2, 3, 4 }; int N = sizeof (arr) / sizeof ( int ); int M = 2; cout << maximumXOR(arr, N, M); return 0; } |
Java
// Java program for the above approach import java.io.*; import java.lang.*; import java.util.*; class GFG{ // Function to find the maximum Bitwise // XOR of any subset of the array of size K static int maximumXOR( int arr[], int n, int K) { // Number of node must K + 1 for // K edges K++; // Stores the maximum Bitwise XOR int maxXor = Integer.MIN_VALUE; // Generate all subsets of the array for ( int i = 0 ; i < ( 1 << n); i++) { // Integer.bitCount() returns // the number of sets bits in // an integer if (Integer.bitCount(i) == K) { // Initialize current xor as 0 int cur_xor = 0 ; for ( int j = 0 ; j < n; j++) { // If jth bit is set in i // then include jth element // in the current xor if ((i & ( 1 << j)) != 0 ) cur_xor = cur_xor ^ arr[j]; } // Update the maximum Bitwise // XOR obtained so far maxXor = Math.max(maxXor, cur_xor); } } // Return the maximum XOR return maxXor; } // Driver Code public static void main(String[] args) { int arr[] = { 1 , 2 , 3 , 4 }; int N = arr.length; int M = 2 ; System.out.println(maximumXOR(arr, N, M)); } } // This code is contributed by Kingash |
Python3
# Python3 program for the above approach # Function to find the maximum Bitwise # XOR of any subset of the array of size K def maximumXOR(arr, n, K): # Number of node must K + 1 for # K edges K + = 1 # Stores the maximum Bitwise XOR maxXor = - 10 * * 9 # Generate all subsets of the array for i in range ( 1 <<n): # __builtin_popcount() returns # the number of sets bits in # an integer if ( bin (i).count( '1' ) = = K): # Initialize current xor as 0 cur_xor = 0 for j in range (n): # If jth bit is set in i # then include jth element # in the current xor if (i & ( 1 << j)): cur_xor = cur_xor ^ arr[j] # Update the maximum Bitwise # XOR obtained so far maxXor = max (maxXor, cur_xor) # Return the maximum XOR return maxXor # Driver Code if __name__ = = '__main__' : arr = [ 1 , 2 , 3 , 4 ] N = len (arr) M = 2 print (maximumXOR(arr, N, M)) # This code is contributed by mohit kumar 29. |
C#
// C# program for the above approach using System; using System.Linq; class GFG{ // Function to find the maximum Bitwise // XOR of any subset of the array of size K static int maximumXOR( int []arr, int n, int K) { // Number of node must K + 1 for // K edges K++; // Stores the maximum Bitwise XOR int maxXor = Int32.MinValue; // Generate all subsets of the array for ( int i = 0; i < (1 << n); i++) { // Finding number of sets // bits in an integer if (Convert.ToString(i, 2).Count(c => c == '1' ) == K) { // Initialize current xor as 0 int cur_xor = 0; for ( int j = 0; j < n; j++) { // If jth bit is set in i // then include jth element // in the current xor if ((i & (1 << j)) != 0) cur_xor = cur_xor ^ arr[j]; } // Update the maximum Bitwise // XOR obtained so far maxXor = Math.Max(maxXor, cur_xor); } } // Return the maximum XOR return maxXor; } // Driver code static void Main() { int [] arr = { 1, 2, 3, 4 }; int N = arr.Length; int M = 2; Console.WriteLine(maximumXOR(arr, N, M)); } } // This code is contributed by jana_sayantan. |
Javascript
<script> // Javascript program for the above approach // Function to find the maximum Bitwise // XOR of any subset of the array of size K function maximumXOR(arr, n, K) { // Number of node must K + 1 for // K edges K++; // Stores the maximum Bitwise XOR let maxXor = Number.MIN_SAFE_INTEGER; // Generate all subsets of the array for (let i = 0; i < (1 << n); i++) { // __builtin_popcount() returns // the number of sets bits in // an integer if ((i).toString(2).split( '' ). filter(x => x == '1' ).length == K) { // Initialize current xor as 0 let cur_xor = 0; for (let j = 0; j < n; j++) { // If jth bit is set in i // then include jth element // in the current xor if (i & (1 << j)) cur_xor = cur_xor ^ arr[j]; } // Update the maximum Bitwise // XOR obtained so far maxXor = Math.max(maxXor, cur_xor); } } // Return the maximum XOR return maxXor; } // Driver Code let arr = [1, 2, 3, 4]; let N = arr.length; let M = 2; document.write(maximumXOR(arr, N, M)); // This code is contributed by _saurabh_jaiswal </script> |
7
Time Complexity: O(N * 2N)
Auxiliary Space: O(1)
Please Login to comment...