# Maximum Bitwise XOR of node values of an Acyclic Graph made up of N given vertices using M edges

Given N nodes valued by [1, N], an array arr[] consisting of N positive integers such that the ith node ( 1-based indexing ) has the value arr[i] and an integer M, the task is to find the maximum Bitwise XOR of node values of an acyclic graph formed by M edges.

Examples:

Input: arr[]= {1, 2, 3, 4}, M = 2
Output: 7
Explanation:
Acyclic graphs having M(= 2) edges can be formed by vertices as:

1. {1, 2, 3}: The value of the Bitwise XOR of vertices is 1^2^3 = 0.
2. {2, 3, 4}: The value of the Bitwise XOR of vertices is 2^3^4 = 5.
3. {1, 2, 4}: The value of the Bitwise XOR of vertices is 1^2^4 = 7.
4. {1, 4, 3}: The value of the Bitwise XOR of vertices is 1^4^3 = 6.

Therefore, the maximum Bitwise XOR among all possible acyclic graphs is 7.

Input: arr[] = {2, 4, 8, 16}, M = 2
Output: 28

Approach: The given problem can be solved by using the fact that an acyclic graph having M edges must have (M + 1) vertices. Therefore, the task is reduced to finding the maximum Bitwise XOR of a subset of the array arr[] having (M + 1) vertices. Follow the steps below to solve the problem:

• Initialize a variable, say maxAns as 0 that stores the maximum Bitwise XOR of an acyclic graph having M edges.
• Generate all possible subsets of the array arr[] and for each subset find the Bitwise XOR of the elements of the subset and update the value of maxAns to the maximum of maxAns and Bitwise XOR.
• After completing the above steps, print the value of maxAns as the result.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to find the maximum Bitwise``// XOR of any subset of the array of size K``int` `maximumXOR(``int` `arr[], ``int` `n, ``int` `K)``{``    ``// Number of node must K + 1 for``    ``// K edges``    ``K++;` `    ``// Stores the maximum Bitwise XOR``    ``int` `maxXor = INT_MIN;` `    ``// Generate all subsets of the array``    ``for` `(``int` `i = 0; i < (1 << n); i++) {` `        ``// __builtin_popcount() returns``        ``// the number of sets bits in``        ``// an integer``        ``if` `(__builtin_popcount(i) == K) {` `            ``// Initialize current xor as 0``            ``int` `cur_xor = 0;` `            ``for` `(``int` `j = 0; j < n; j++) {` `                ``// If jth bit is set in i``                ``// then include jth element``                ``// in the current xor``                ``if` `(i & (1 << j))``                    ``cur_xor = cur_xor ^ arr[j];``            ``}` `            ``// Update the maximum Bitwise``            ``// XOR obtained so far``            ``maxXor = max(maxXor, cur_xor);``        ``}``    ``}` `    ``// Return the maximum XOR``    ``return` `maxXor;``}` `// Driver Code``int` `main()``{``    ``int` `arr[] = { 1, 2, 3, 4 };``    ``int` `N = ``sizeof``(arr) / ``sizeof``(``int``);``    ``int` `M = 2;``    ``cout << maximumXOR(arr, N, M);` `    ``return` `0;``}`

## Java

 `// Java program for the above approach``import` `java.io.*;``import` `java.lang.*;``import` `java.util.*;` `class` `GFG{` `// Function to find the maximum Bitwise``// XOR of any subset of the array of size K``static` `int` `maximumXOR(``int` `arr[], ``int` `n, ``int` `K)``{``    ` `    ``// Number of node must K + 1 for``    ``// K edges``    ``K++;` `    ``// Stores the maximum Bitwise XOR``    ``int` `maxXor = Integer.MIN_VALUE;` `    ``// Generate all subsets of the array``    ``for``(``int` `i = ``0``; i < (``1` `<< n); i++) ``    ``{``        ` `        ``// Integer.bitCount() returns``        ``// the number of sets bits in``        ``// an integer``        ``if` `(Integer.bitCount(i) == K) ``        ``{``            ` `            ``// Initialize current xor as 0``            ``int` `cur_xor = ``0``;` `            ``for``(``int` `j = ``0``; j < n; j++) ``            ``{``                ` `                ``// If jth bit is set in i``                ``// then include jth element``                ``// in the current xor``                ``if` `((i & (``1` `<< j)) != ``0``)``                    ``cur_xor = cur_xor ^ arr[j];``            ``}` `            ``// Update the maximum Bitwise``            ``// XOR obtained so far``            ``maxXor = Math.max(maxXor, cur_xor);``        ``}``    ``}` `    ``// Return the maximum XOR``    ``return` `maxXor;``}` `// Driver Code``public` `static` `void` `main(String[] args)``{``    ``int` `arr[] = { ``1``, ``2``, ``3``, ``4` `};``    ``int` `N = arr.length;``    ``int` `M = ``2``;``    ` `    ``System.out.println(maximumXOR(arr, N, M));``}``}` `// This code is contributed by Kingash`

## Python3

 `# Python3 program for the above approach` `# Function to find the maximum Bitwise``# XOR of any subset of the array of size K``def` `maximumXOR(arr, n, K):``  ` `    ``# Number of node must K + 1 for``    ``# K edges``    ``K ``+``=` `1` `    ``# Stores the maximum Bitwise XOR``    ``maxXor ``=` `-``10``*``*``9` `    ``# Generate all subsets of the array``    ``for` `i ``in` `range``(``1``<

## C#

 `// C# program for the above approach``using` `System;``using` `System.Linq;` `class` `GFG{` `// Function to find the maximum Bitwise``// XOR of any subset of the array of size K``static` `int` `maximumXOR(``int` `[]arr, ``int` `n, ``int` `K)``{``    ` `    ``// Number of node must K + 1 for``    ``// K edges``    ``K++;` `    ``// Stores the maximum Bitwise XOR``    ``int` `maxXor = Int32.MinValue;` `    ``// Generate all subsets of the array``    ``for``(``int` `i = 0; i < (1 << n); i++)``    ``{``        ` `        ``// Finding number of sets ``        ``// bits in an integer``        ``if` `(Convert.ToString(i, 2).Count(c => c == ``'1'``) == K)``        ``{``            ` `            ``// Initialize current xor as 0``            ``int` `cur_xor = 0;` `            ``for``(``int` `j = 0; j < n; j++)``            ``{``                ` `                ``// If jth bit is set in i``                ``// then include jth element``                ``// in the current xor``                ``if` `((i & (1 << j)) != 0)``                    ``cur_xor = cur_xor ^ arr[j];``            ``}` `            ``// Update the maximum Bitwise``            ``// XOR obtained so far``            ``maxXor = Math.Max(maxXor, cur_xor);``        ``}``    ``}` `    ``// Return the maximum XOR``    ``return` `maxXor;``}` `// Driver code``static` `void` `Main()``{``    ``int` `[] arr = { 1, 2, 3, 4 };``    ``int` `N = arr.Length;``    ``int` `M = 2;``    ` `    ``Console.WriteLine(maximumXOR(arr, N, M));``}``}` `// This code is contributed by jana_sayantan.`

## Javascript

 ``

Output:
`7`

Time Complexity: O(N * 2N
Auxiliary Space: O(1)

Previous
Next