Skip to content
Related Articles

Related Articles

Improve Article

Maximum Bitwise AND value of subsequence of length K

  • Difficulty Level : Easy
  • Last Updated : 08 Jun, 2021

Given an array a of size N and an integer K. The task is to find the maximum bitwise and value of elements of any subsequence of length K
Note: a[i] <= 109 
Examples: 
 

Input: a[] = {10, 20, 15, 4, 14}, K = 4 
Output:
{20, 15, 4, 14} is the subsequence with highest ‘&’ value. 
Input: a[] = {255, 127, 31, 5, 24, 37, 15}, K = 5 
Output: 8

 

Naive Approach: A naive approach is to recursively find the bitwise and value of all subsequences of length K and the maximum among all of them will be the answer. 
Efficient Approach: An efficient approach is to solve it using bit properties. Below are the steps to solve the problem: 
 

  • Iterate from the left(initially left = 31 as 232 > 109 ) till we find > K numbers in the vector temp (initially temp = arr) whose i-th bit is set. Update the new set of numbers to temp array
  • If we do not get > K numbers, the & value of any K elements in the temp array will be the maximum & value possible.
  • Repeat Step-1 with left re-initialized as first-bit + 1.

Below is the implementation of the above approach: 
 



C++




// C++ program to find the sum of
// the addition of all possible subsets.
#include <bits/stdc++.h>
using namespace std;
 
// Function to perform step-1
vector<int> findSubset(vector<int>& temp, int& last, int k)
{
    vector<int> ans;
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--) {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        for (auto it : temp) {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k) {
            for (auto it : temp) {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.push_back(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
 
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
int findMaxiumAnd(int a[], int n, int k)
{
    int last = 31;
    // Temporary arrays
    vector<int> temp1, temp2;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++) {
        temp2.push_back(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.size() >= k) {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, last, k);
    }
 
    // Find the & value
    int ans = temp1[0];
    for (int i = 0; i < k; i++)
        ans = ans & temp1[i];
 
    return ans;
}
 
// Driver Code
int main()
{
    int a[] = { 255, 127, 31, 5, 24, 37, 15 };
    int n = sizeof(a) / sizeof(a[0]);
    int k = 4;
 
    cout << findMaxiumAnd(a, n, k);
}

Java




// Java program to find the sum of
// the addition of all possible subsets.
import java.util.*;
class GFG
{
static int last;
 
// Function to perform step-1
static Vector<Integer>
       findSubset(Vector<Integer> temp, int k)
{
    Vector<Integer> ans = new Vector<Integer>();
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--)
    {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        for (Integer it : temp)
        {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            for (Integer it : temp)
            {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.add(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
static int findMaxiumAnd(int a[], int n, int k)
{
    last = 31;
     
    // Temporary arrays
    Vector<Integer> temp1 = new Vector<Integer>();
    Vector<Integer> temp2 = new Vector<Integer>();;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++)
    {
        temp2.add(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.size() >= k)
    {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
 
    // Find the & value
    int ans = temp1.get(0);
    for (int i = 0; i < k; i++)
        ans = ans & temp1.get(i);
 
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
    int a[] = { 255, 127, 31, 5, 24, 37, 15 };
    int n = a.length;
    int k = 4;
 
    System.out.println(findMaxiumAnd(a, n, k));
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find the sum of
# the addition of all possible subsets.
last = 31
 
# Function to perform step-1
def findSubset(temp, k):
    global last
    ans = []
 
    # Iterate from left till 0
    # till we get a bit set of K numbers
    for i in range(last, -1, -1):
        cnt = 0
 
        # Count the numbers whose
        # i-th bit is set
        for it in temp:
            bit = it & (1 << i)
            if (bit > 0):
                cnt += 1
 
        # If the array has numbers>=k
        # whose i-th bit is set
        if (cnt >= k):
            for it in temp:
                bit = it & (1 << i)
                if (bit > 0):
                    ans.append(it)
 
            # Update last
            last = i - 1
 
            # Return the new set of numbers
            return ans
 
    return ans
 
# Function to find the maximum '&' value
# of K elements in subsequence
def findMaxiumAnd(a, n, k):
    global last
 
    # Temporary arrays
    temp1, temp2, = [], []
 
    # Initially temp = arr
    for i in range(n):
        temp2.append(a[i])
 
    # Iterate till we have >=K elements
    while len(temp2) >= k:
 
        # Temp array
        temp1 = temp2
 
        # Find new temp array if
        # K elements are there
        temp2 = findSubset(temp2, k)
 
    # Find the & value
    ans = temp1[0]
    for i in range(k):
        ans = ans & temp1[i]
 
    return ans
 
# Driver Code
a = [255, 127, 31, 5, 24, 37, 15]
n = len(a)
k = 4
 
print(findMaxiumAnd(a, n, k))
 
# This code is contributed by Mohit Kumar

C#




// C# program to find the sum of
// the addition of all possible subsets.
using System;
using System.Collections.Generic;
 
class GFG
{
static int last;
 
// Function to perform step-1
static List<int>findSubset(List<int> temp, int k)
{
    List<int> ans = new List<int>();
 
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (int i = last; i >= 0; i--)
    {
        int cnt = 0;
 
        // Count the numbers whose
        // i-th bit is set
        foreach (int it in temp)
        {
            int bit = it & (1 << i);
            if (bit > 0)
                cnt++;
        }
 
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            foreach (int it in temp)
            {
                int bit = it & (1 << i);
                if (bit > 0)
                    ans.Add(it);
            }
 
            // Update last
            last = i - 1;
 
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
static int findMaxiumAnd(int []a, int n, int k)
{
    last = 31;
     
    // Temporary arrays
    List<int> temp1 = new List<int>();
    List<int> temp2 = new List<int>();;
 
    // Initially temp = arr
    for (int i = 0; i < n; i++)
    {
        temp2.Add(a[i]);
    }
 
    // Iterate till we have >=K elements
    while ((int)temp2.Count >= k)
    {
 
        // Temp array
        temp1 = temp2;
 
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
 
    // Find the & value
    int ans = temp1[0];
    for (int i = 0; i < k; i++)
        ans = ans & temp1[i];
 
    return ans;
}
 
// Driver Code
public static void Main(String[] args)
{
    int []a = { 255, 127, 31, 5, 24, 37, 15 };
    int n = a.Length;
    int k = 4;
 
    Console.WriteLine(findMaxiumAnd(a, n, k));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
// Javascript program to find the sum of
// the addition of all possible subsets.
 
// Function to perform step-1
function findSubset(temp,k)
{
    let ans = [];
   
    // Iterate from left till 0
    // till we get a bit set of K numbers
    for (let i = last; i >= 0; i--)
    {
        let cnt = 0;
   
        // Count the numbers whose
        // i-th bit is set
        for (let it=0;it< temp.length;it++)
        {
            let bit = temp[it] & (1 << i);
            if (bit > 0)
                cnt++;
        }
   
        // If the array has numbers>=k
        // whose i-th bit is set
        if (cnt >= k)
        {
            for (let it=0;it< temp.length;it++)
            {
                let bit = temp[it] & (1 << i);
                if (bit > 0)
                    ans.push(temp[it]);
            }
   
            // Update last
            last = i - 1;
   
            // Return the new set of numbers
            return ans;
        }
    }
    return ans;
}
 
// Function to find the maximum '&' value
// of K elements in subsequence
function findMaxiumAnd(a,n,k)
{
    last = 31;
       
    // Temporary arrays
    let temp1 = [];
    let temp2 = [];
   
    // Initially temp = arr
    for (let i = 0; i < n; i++)
    {
        temp2.push(a[i]);
    }
   
    // Iterate till we have >=K elements
    while (temp2.length >= k)
    {
   
        // Temp array
        temp1 = temp2;
   
        // Find new temp array if
        // K elements are there
        temp2 = findSubset(temp2, k);
    }
   
    // Find the & value
    let ans = temp1[0];
    for (let i = 0; i < k; i++)
        ans = ans & temp1[i];
   
    return ans;
}
 
// Driver Code
let a=[255, 127, 31, 5, 24, 37, 15 ];
let n = a.length;
let k = 4;
document.write(findMaxiumAnd(a, n, k));
 
 
 
// This code is contributed by unknown2108
</script>
Output: 
24

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :