Given two same-sized arrays A[] and B[] (both arrays contain distinct elements individually but may have some common elements), the task is to form a third (or result) array of the same size. The resulting array should have maximum n elements from both arrays. It should have chosen elements of A[] first, then chosen elements of B[] in the same order as they appear in original arrays. If there are common elements, then only one element should be present in res[] and priority should be given to A[].**Examples: **

Input : A[] = [ 9 7 2 3 6 ] B[] = [ 7 4 8 0 1 ] Output : res[] = [9 7 6 4 8] res[] has maximum n elements of both A[] and B[] such that elements of A[] appear first (in same order), then elements of B[]. Also 7 is common and priority is given to A's 7. Input : A[] = [ 6 7 5 3 ] B[] = [ 5 6 2 9 ] Output : res[] = [ 6 7 5 9 ]

1) Create copies of both arrays and sort the copies in decreasing order.

2) Use a hash to pick unique n maximum elements of both arrays, giving priority to A[].

3) Initialize result array as empty.

4) Traverse through A[], copy those elements of A[] that are present in the hash. This is done to keep the order of elements the same.

5) Repeat step 4 for B[]. This time we only consider those elements that are not present in A[] (Do not appear twice in the hash).

Below c++ implementation of above idea.

## C++

`// Make a set of maximum elements from two` `// arrays A[] and B[]` `#include <bits/stdc++.h>` `using` `namespace` `std;` `void` `maximizeTheFirstArray(` `int` `A[], ` `int` `B[],` ` ` `int` `n)` `{` ` ` `// Create copies of A[] and B[] and sort` ` ` `// the copies in descending order.` ` ` `vector<` `int` `> temp1(A, A+n);` ` ` `vector<` `int` `> temp2(B, B+n);` ` ` `sort(temp1.begin(), temp1.end(), greater<` `int` `>());` ` ` `sort(temp2.begin(), temp2.end(), greater<` `int` `>());` ` ` `// Put maximum n distinct elements of` ` ` `// both sorted arrays in a map.` ` ` `unordered_map<` `int` `, ` `int` `> m;` ` ` `int` `i = 0, j = 0;` ` ` `while` `(m.size() < n)` ` ` `{` ` ` `if` `(temp1[i] >= temp2[j])` ` ` `{` ` ` `m[temp1[i]]++;` ` ` `i++;` ` ` `}` ` ` `else` ` ` `{` ` ` `m[temp2[j]]++;` ` ` `j++;` ` ` `}` ` ` `}` ` ` `// Copy elements of A[] to that ` ` ` `// are present in hash m.` ` ` `vector<` `int` `> res;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `if` `(m.find(A[i]) != m.end())` ` ` `res.push_back(A[i]);` ` ` `// Copy elements of B[] to that ` ` ` `// are present in hash m. This time` ` ` `// we also check if the element did` ` ` `// not appear twice.` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `if` `(m.find(B[i]) != m.end() &&` ` ` `m[B[i]] == 1)` ` ` `res.push_back(B[i]);` ` ` `// print result` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `cout << res[i] << ` `" "` `;` `}` `// driver program` `int` `main()` `{` ` ` `int` `A[] = { 9, 7, 2, 3, 6 };` ` ` `int` `B[] = { 7, 4, 8, 0, 1 };` ` ` `int` `n = ` `sizeof` `(A) / ` `sizeof` `(A[0]);` ` ` `maximizeTheFirstArray(A, B, n);` ` ` `return` `0;` `}` |

*chevron_right*

*filter_none*

## Python3

`# Python3 program to implement the ` `# above approach` `# Make a set of maximum elements ` `# from two arrays A[] and B[]` `from` `collections ` `import` `defaultdict` `def` `maximizeTheFirstArray(A, B, n):` ` ` `# Create copies of A[] and B[] ` ` ` `# and sort the copies in ` ` ` `# descending order.` ` ` `temp1 ` `=` `A.copy()` ` ` `temp2 ` `=` `B.copy()` ` ` `temp1.sort(reverse ` `=` `True` `)` ` ` `temp2.sort(reverse ` `=` `True` `)` ` ` `# Put maximum n distinct ` ` ` `# elements of both sorted ` ` ` `# arrays in a map.` ` ` `m ` `=` `defaultdict(` `int` `)` ` ` `i ` `=` `0` ` ` `j ` `=` `0` `;` ` ` ` ` `while` `(` `len` `(m) < n):` ` ` `if` `(temp1[i] >` `=` `temp2[j]):` ` ` `m[temp1[i]] ` `+` `=` `1` ` ` `i ` `+` `=` `1` ` ` `else` `:` ` ` `m[temp2[j]] ` `+` `=` `1` ` ` `j ` `+` `=` `1` ` ` `# Copy elements of A[] to that ` ` ` `# are present in hash m.` ` ` `res ` `=` `[]` ` ` ` ` `for` `i ` `in` `range` `(n):` ` ` `if` `(A[i] ` `in` `m):` ` ` `res.append(A[i])` ` ` `# Copy elements of B[] to that ` ` ` `# are present in hash m. This time` ` ` `# we also check if the element did` ` ` `# not appear twice.` ` ` `for` `i ` `in` `range` `(n):` ` ` `if` `(B[i] ` `in` `m ` `and` ` ` `m[B[i]] ` `=` `=` `1` `):` ` ` `res.append(B[i])` ` ` `# Print result` ` ` `for` `i ` `in` `range` `(n):` ` ` `print` `(res[i], end ` `=` `" "` `)` `# Driver code` `if` `__name__ ` `=` `=` `"__main__"` `:` ` ` ` ` `A ` `=` `[` `9` `, ` `7` `, ` `2` `, ` `3` `, ` `6` `]` ` ` `B ` `=` `[` `7` `, ` `4` `, ` `8` `, ` `0` `, ` `1` `]` ` ` `n ` `=` `len` `(A)` ` ` `maximizeTheFirstArray(A, B, n);` ` ` `# This code is contributed by Chitranayal` |

*chevron_right*

*filter_none*

**Output: **

9 7 6 4 8

**Time complexity:** O(n Log n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.