Skip to content
Related Articles

Related Articles

Improve Article
Maximum area of quadrilateral
  • Difficulty Level : Medium
  • Last Updated : 15 Mar, 2021

Given four sides of quadrilateral a, b, c, d, find the maximum area of the quadrilateral possible from the given sides .
Examples: 
 

Input : 1 2 1 2
Output : 2.00
It is optimal to construct a rectangle for maximum area .

 

 

According to Bretschneider’s formula, the area of a general quadilateral is given by K={\sqrt {(s-a)(s-b)(s-c)(s-d)-abcd\cdot \cos ^{2}\left({\frac {\alpha +\gamma }{2}}\right)}}
Here a, b, c, d are the sides of a quadilateral, s is the semiperimeter of a quadilateral and angles are two opposite angles. 
So, this formula is maximized only when opposite angles sum to pi(180) then we can use a simplified form of Bretschneider’s formula to get the (maximum) area K. 
K={\sqrt {(s-a)(s-b)(s-c)(s-d)}}
This formula is called as Brahmagupta’s formula
Below is the implementation of given approach
 



C++




// CPP program to find maximum are of a
// quadrilateral
#include <bits/stdc++.h>
using namespace std;
 
double maxArea(double a, double b,
                double c, double d)
{
    // Calculating the semi-perimeter
    // of the given quadilateral
    double semiperimeter = (a + b + c + d) / 2;
 
    // Applying Brahmagupta's formula to
    // get maximum area of quadrilateral
    return sqrt((semiperimeter - a) *
                (semiperimeter - b) *
                (semiperimeter - c) *
                (semiperimeter - d));
}
 
// Driver code
int main()
{
    double a = 1, b = 2, c= 1, d = 2;
    printf("%.2f\n",maxArea(a, b, c, d));
    return 0;
}

Java




// Java program to find maximum are of a
// quadrilateral
import java.io.*;
 
class GFG
{
    static double maxArea(double a, double b,
                           double c, double d)
    {
        // Calculating the semi-perimeter
        // of the given quadilateral
        double semiperimeter = (a + b + c + d) / 2;
     
        // Applying Brahmagupta's formula to
        // get maximum area of quadrilateral
        return Math.sqrt((semiperimeter - a) *
                         (semiperimeter - b) *
                         (semiperimeter - c) *
                         (semiperimeter - d));
    }
     
    // Driver code
    public static void main (String[] args)
    {
        double a = 1, b = 2, c= 1, d = 2;
        System.out.println(maxArea(a, b, c, d));
    }
}
 
// This code is contributed by sunnysingh

Python3




# Python3 program to find maximum
# area of a quadrilateral
import math
 
def maxArea (a , b , c , d ):
 
    # Calculating the semi-perimeter
    # of the given quadilateral
    semiperimeter = (a + b + c + d) / 2
     
    # Applying Brahmagupta's formula to
    # get maximum area of quadrilateral
    return math.sqrt((semiperimeter - a) *
                    (semiperimeter - b) *
                    (semiperimeter - c) *
                    (semiperimeter - d))
 
# Driver code
a = 1
b = 2
c = 1
d = 2
print("%.2f"%maxArea(a, b, c, d))
 
# This code is contributed by "Sharad_Bhardwaj".

C#




// C# program to find maximum are of a
// quadrilateral
using System;
 
class GFG {
     
    static double maxArea(double a, double b,
                          double c, double d)
    {
         
        // Calculating the semi-perimeter
        // of the given quadilateral
        double semiperimeter = (a + b + c + d) / 2;
     
        // Applying Brahmagupta's formula to
        // get maximum area of quadrilateral
        return Math.Sqrt((semiperimeter - a) *
                         (semiperimeter - b) *
                         (semiperimeter - c) *
                         (semiperimeter - d));
    }
     
    // Driver code
    public static void Main ()
    {
        double a = 1, b = 2, c= 1, d = 2;
         
        Console.WriteLine(maxArea(a, b, c, d));
    }
}
 
// This code is contributed by vt_m.

PHP




<?php
// PHP program to find maximum are of a
// quadrilateral
 
function maxArea( $a, $b, $c, $d)
{
     
    // Calculating the semi-perimeter
    // of the given quadilateral
    $semiperimeter = ($a + $b + $c + $d) / 2;
 
    // Applying Brahmagupta's formula to
    // get maximum area of quadrilateral
    return sqrt(($semiperimeter - $a) *
                ($semiperimeter - $b) *
                ($semiperimeter - $c) *
                ($semiperimeter - $d));
}
 
// Driver code
$a = 1; $b = 2; $c= 1; $d = 2;
echo(maxArea($a, $b, $c, $d));
 
// This code is contributed by vt_m.
?>

Javascript




<script>
 
// JavaScript program to find maximum are of a
// quadrilateral
 
function maxArea(a, b, c, d)
{
    // Calculating the semi-perimeter
    // of the given quadilateral
    let semiperimeter = (a + b + c + d) / 2;
 
    // Applying Brahmagupta's formula to
    // get maximum area of quadrilateral
    return Math.sqrt((semiperimeter - a) *
                (semiperimeter - b) *
                (semiperimeter - c) *
                (semiperimeter - d));
}
 
// Driver code
 
    let a = 1, b = 2, c= 1, d = 2;
    document.write(maxArea(a, b, c, d));
 
// This code is contributed by Surbhi Tyagi.
 
</script>

Output:  

2.00

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :