Maximum area of rectangle possible with given perimeter

Given the perimeter of a rectangle, the task is to find the maximum area of a rectangle which can use n-unit length as its perimeter.
Note: Length and Breadth must be an integral value.

Example:

Input: perimeter = 15
Output: Maximum Area = 12

Input: perimeter = 16
Output: Maximum Area = 16

Approach: For area to be maximum of any rectangle the difference of length and breadth must be minimal. So, in such case the length must be ceil (perimeter / 4) and breadth will be be floor(perimeter /4). Hence the maximum area of a rectangle with given perimeter is equal to ceil(perimeter/4) * floor(perimeter/4).

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP to find maximum area rectangle
#include <bits/stdc++.h>
using namespace std;
  
// Function to find max area
int maxArea(float perimeter)
{
    int length = (int)ceil(perimeter / 4);
    int breadth = (int)floor(perimeter / 4);
  
    // return area
    return length * breadth;
}
  
// Driver code
int main()
{
    float n = 38;
    cout << "Maximum Area = " << maxArea(n);
  
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java to find maximum area rectangle
  
import java.io.*;
  
class GFG {
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.ceil(perimeter / 4);
    int breadth = (int)Math.floor(perimeter / 4);
  
// return area
return length * breadth;
}
  
// Driver code
      
    public static void main (String[] args) {
  
        float n = 38;
        System.out.println("Maximum Area = " +
                maxArea(n));
          
    }
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find
# maximum area rectangle
from math import ceil, floor
  
# Function to find max area
def maxArea(perimeter):
    length = int(ceil(perimeter / 4))
    breadth = int(floor(perimeter / 4))
  
    # return area
    return length * breadth
  
# Driver code
if __name__ == '__main__':
    n = 38
    print("Maximum Area =", maxArea(n))
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# to find maximum area rectangle
using System;
  
class GFG
{
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.Ceiling(perimeter / 4);
    int breadth = (int)Math.Floor(perimeter / 4);
  
    // return area
    return length * breadth;
}
  
// Driver code
public static void Main()
{
    float n = 38;
    Console.WriteLine("Maximum Area = "
                             maxArea(n));
}
}
  
// This code is contributed
// by Akanksha Rai(Abby_akku)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP to find maximum area rectangle 
  
// Function to find max area 
function maxArea($perimeter
    $length = (int)ceil($perimeter / 4); 
    $breadth = (int)floor($perimeter / 4); 
  
    // return area 
    return ($length * $breadth); 
  
// Driver code 
$n = 38; 
echo "Maximum Area = " , maxArea($n); 
  
// This code is contributed by jit_t
?>
chevron_right

Output:
Maximum Area = 90

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :
Practice Tags :