Skip to content
Related Articles

Related Articles

Maximum area of rectangle possible with given perimeter
  • Last Updated : 25 Mar, 2021

Given the perimeter of a rectangle, the task is to find the maximum area of a rectangle which can use n-unit length as its perimeter. 

Note: Length and Breadth must be an integral value. 

Example: 

Input: perimeter = 15
Output: Maximum Area = 12

Input: perimeter = 16
Output: Maximum Area = 16

Approach: For area to be maximum of any rectangle the difference of length and breadth must be minimal. So, in such case the length must be ceil (perimeter / 4) and breadth will be be floor(perimeter /4). Hence the maximum area of a rectangle with given perimeter is equal to ceil(perimeter/4) * floor(perimeter/4).

Below is the implementation of the above approach:  

C++




// C++ to find maximum area rectangle
#include <bits/stdc++.h>
using namespace std;
 
// Function to find max area
int maxArea(float perimeter)
{
    int length = (int)ceil(perimeter / 4);
    int breadth = (int)floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
int main()
{
    float n = 38;
    cout << "Maximum Area = " << maxArea(n);
 
    return 0;
}

Java




//Java to find maximum area rectangle
 
import java.io.*;
 
class GFG {
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.ceil(perimeter / 4);
    int breadth = (int)Math.floor(perimeter / 4);
 
// return area
return length * breadth;
}
 
// Driver code
     
    public static void main (String[] args) {
 
        float n = 38;
        System.out.println("Maximum Area = " +
                maxArea(n));
         
    }
}

Python3




# Python3 program to find
# maximum area rectangle
from math import ceil, floor
 
# Function to find max area
def maxArea(perimeter):
    length = int(ceil(perimeter / 4))
    breadth = int(floor(perimeter / 4))
 
    # return area
    return length * breadth
 
# Driver code
if __name__ == '__main__':
    n = 38
    print("Maximum Area =", maxArea(n))

C#




// C# to find maximum area rectangle
using System;
 
class GFG
{
// Function to find max area
static int maxArea(float perimeter)
{
    int length = (int)Math.Ceiling(perimeter / 4);
    int breadth = (int)Math.Floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
public static void Main()
{
    float n = 38;
    Console.WriteLine("Maximum Area = " +
                             maxArea(n));
}
}
 
// This code is contributed
// by Akanksha Rai(Abby_akku)

PHP




<?php
// PHP to find maximum area rectangle
 
// Function to find max area
function maxArea($perimeter)
{
    $length = (int)ceil($perimeter / 4);
    $breadth = (int)floor($perimeter / 4);
 
    // return area
    return ($length * $breadth);
}
 
// Driver code
$n = 38;
echo "Maximum Area = " , maxArea($n);
 
// This code is contributed by jit_t
?>

Javascript




<script>
 
// JavaScript to find maximum area rectangle
 
// Function to find max area
function maxArea(perimeter)
{
    let length = Math.ceil(perimeter / 4);
    let breadth = Math.floor(perimeter / 4);
 
    // return area
    return length * breadth;
}
 
// Driver code
let n = 38;
 
document.write("Maximum Area = " + maxArea(n));
 
// This code is contributed by Manoj.
 
</script>
Output: 
Maximum Area = 90

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :