Maximum area of rectangle possible with given perimeter
Given the perimeter of a rectangle, the task is to find the maximum area of a rectangle which can use n-unit length as its perimeter.
Note: Length and Breadth must be an integral value.
Example:
Input: perimeter = 15 Output: Maximum Area = 12 Input: perimeter = 16 Output: Maximum Area = 16
Approach: For area to be maximum of any rectangle the difference of length and breadth must be minimal. So, in such case the length must be ceil (perimeter / 4) and breadth will be floor(perimeter /4). Hence the maximum area of a rectangle with given perimeter is equal to ceil(perimeter/4) * floor(perimeter/4).
Below is the implementation of the above approach:
C++
// C++ to find maximum area rectangle #include <bits/stdc++.h> using namespace std; // Function to find max area int maxArea( float perimeter) { int length = ( int ) ceil (perimeter / 4); int breadth = ( int ) floor (perimeter / 4); // return area return length * breadth; } // Driver code int main() { float n = 38; cout << "Maximum Area = " << maxArea(n); return 0; } |
Java
//Java to find maximum area rectangle import java.io.*; class GFG { // Function to find max area static int maxArea( float perimeter) { int length = ( int )Math.ceil(perimeter / 4 ); int breadth = ( int )Math.floor(perimeter / 4 ); // return area return length * breadth; } // Driver code public static void main (String[] args) { float n = 38 ; System.out.println( "Maximum Area = " + maxArea(n)); } } |
Python3
# Python3 program to find # maximum area rectangle from math import ceil, floor # Function to find max area def maxArea(perimeter): length = int (ceil(perimeter / 4 )) breadth = int (floor(perimeter / 4 )) # return area return length * breadth # Driver code if __name__ = = '__main__' : n = 38 print ( "Maximum Area =" , maxArea(n)) |
C#
// C# to find maximum area rectangle using System; class GFG { // Function to find max area static int maxArea( float perimeter) { int length = ( int )Math.Ceiling(perimeter / 4); int breadth = ( int )Math.Floor(perimeter / 4); // return area return length * breadth; } // Driver code public static void Main() { float n = 38; Console.WriteLine( "Maximum Area = " + maxArea(n)); } } // This code is contributed // by Akanksha Rai(Abby_akku) |
PHP
<?php // PHP to find maximum area rectangle // Function to find max area function maxArea( $perimeter ) { $length = (int) ceil ( $perimeter / 4); $breadth = (int) floor ( $perimeter / 4); // return area return ( $length * $breadth ); } // Driver code $n = 38; echo "Maximum Area = " , maxArea( $n ); // This code is contributed by jit_t ?> |
Javascript
<script> // JavaScript to find maximum area rectangle // Function to find max area function maxArea(perimeter) { let length = Math.ceil(perimeter / 4); let breadth = Math.floor(perimeter / 4); // return area return length * breadth; } // Driver code let n = 38; document.write( "Maximum Area = " + maxArea(n)); // This code is contributed by Manoj. </script> |
Output:
Maximum Area = 90
Time Complexity: O(1)
Auxiliary Space: O(1)
Please Login to comment...