Skip to content
Related Articles

Related Articles

Improve Article
Maximum and Minimum value of a quadratic function
  • Last Updated : 22 Apr, 2021

Given a quadratic function ax2 + bx + c. Find the maximum and minimum value of the function possible when x is varied for all real values possible.

Examples:

Input: a = 1, b = -4, c = 4
Output:
Maxvalue = Infinity
Minvalue = 0
Quadratic function given is x2 -4x + 4
At x = 2, value of the function is equal to zero.

Input: a = -1, b = 3, c = -2
Output:
Maxvalue = 0.25
Minvalue = -Infinity

Approach: 

 Q(x)=ax2 + bx + c.
     =a(x + b/(2a))2      +     c-b2/(4a).
       first part             second part

The function is broken into two parts. 
The first part is a perfect square function. There can be two cases: 

  1. Case 1: If value of a is positive. 
    • The maximum value would be equal to Infinity.
    • The minimum value of the function will come when the first part is equal to zero because the minimum value of a square function is zero.
  2. Case 2: If value of a is negative. 
    • The minimum value would be equal to -Infinity.
    • Since a is negative, the task to maximize the negative square function. Again maximum value of a negative square function would be equal to zero as it would be a negative value for any other value of x.

The second part is a constant value for a given quadratic function and hence cannot change for any value of x. Hence, it will be added in both cases. Hence, the answer to the problem is:



If a > 0,
    Maxvalue = Infinity
    Minvalue = c - b2 / (4a)
If a < 0,
    Maxvalue = c - b2 / (4a)
    Minvalue = -Infinity

Below is the implementation of the above approach: 

C++




// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the Maximum and Minimum
// values of the quadratic function
void PrintMaxMinValue(double a, double b, double c)
{
 
    // Calculate the value of second part
    double secondPart = c * 1.0 - (b * b / (4.0 * a));
 
    // Print the values
    if (a > 0) {
 
        // Open upward parabola function
        cout << "Maxvalue = "
             << "Infinity\n";
        cout << "Minvalue = " << secondPart;
    }
    else if (a < 0) {
 
        // Open downward parabola function
        cout << "Maxvalue = " << secondPart << "\n";
        cout << "Minvalue = "
             << "-Infinity";
    }
    else {
 
        // If a=0 then it is not a quadratic function
        cout << "Not a quadratic function\n";
    }
}
 
// Driver code
int main()
{
    double a = -1, b = 3, c = -2;
 
    PrintMaxMinValue(a, b, c);
 
    return 0;
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
 
    // Function to print the Maximum and Minimum
    // values of the quadratic function
    static void PrintMaxMinValue(double a, double b, double c)
    {
 
        // Calculate the value of second part
        double secondPart = c * 1.0 - (b * b / (4.0 * a));
 
        // Print the values
        if (a > 0)
        {
 
            // Open upward parabola function
            System.out.print("Maxvalue = "
                    + "Infinity\n");
            System.out.print("Minvalue = " + secondPart);
        }
        else if (a < 0)
        {
 
            // Open downward parabola function
            System.out.print("Maxvalue = " + secondPart + "\n");
            System.out.print("Minvalue = "
                    + "-Infinity");
        }
        else
        {
 
            // If a=0 then it is not a quadratic function
            System.out.print("Not a quadratic function\n");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        double a = -1, b = 3, c = -2;
 
        PrintMaxMinValue(a, b, c);
    }
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the above approach
 
# Function to print the Maximum and Minimum
# values of the quadratic function
def PrintMaxMinValue(a, b, c) :
 
    # Calculate the value of second part
    secondPart = c * 1.0 - (b * b / (4.0 * a));
     
    # Print the values
    if (a > 0) :
         
        # Open upward parabola function
        print("Maxvalue =", "Infinity");
        print("Minvalue = ", secondPart);
         
    elif (a < 0) :
         
        # Open downward parabola function
        print("Maxvalue = ", secondPart);
        print("Minvalue =", "-Infinity");
         
    else :
         
        # If a=0 then it is not a quadratic function
        print("Not a quadratic function");
 
# Driver code
if __name__ == "__main__" :
    a = -1; b = 3; c = -2;
 
    PrintMaxMinValue(a, b, c);
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the above approach
using System;
 
class GFG
{
     
    // Function to print the Maximum and Minimum
    // values of the quadratic function
    static void PrintMaxMinValue(double a, double b, double c)
    {
 
        // Calculate the value of second part
        double secondPart = c * 1.0 - (b * b / (4.0 * a));
 
        // Print the values
        if (a > 0)
        {
 
            // Open upward parabola function
            Console.Write("Maxvalue = "
                    + "Infinity\n");
            Console.Write("Minvalue = " + secondPart);
        }
        else if (a < 0)
        {
 
            // Open downward parabola function
            Console.Write("Maxvalue = " + secondPart + "\n");
            Console.Write("Minvalue = "
                    + "-Infinity");
        }
        else
        {
 
            // If a=0 then it is not a quadratic function
            Console.Write("Not a quadratic function\n");
        }
    }
 
    // Driver code
    static public void Main ()
    {
        double a = -1, b = 3, c = -2;
        PrintMaxMinValue(a, b, c);
    }
}
 
// This code is contributed by ajit.

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to print the Maximum and Minimum
// values of the quadratic function
function PrintMaxMinValue(a, b, c)
{
     
    // Calculate the value of second part
    var secondPart = c * 1.0 -
                    (b * b / (4.0 * a));
 
    // Print the values
    if (a > 0)
    {
 
        // Open upward parabola function
        document.write("Maxvalue = " +
                       "Infinity" + "<br>");
        document.write("Minvalue = " +
                       secondPart);
    }
    else if (a < 0)
    {
 
        // Open downward parabola function
        document.write("Maxvalue = " +
                       secondPart + "<br>");
        document.write("Minvalue = " +
                       "-Infinity");
    }
    else
    {
         
        // If a=0 then it is not a quadratic function
        document.write("Not a quadratic function\n");
    }
}
 
// Driver Code
var a = -1, b = 3, c = -2;
 
PrintMaxMinValue(a, b, c);
 
// This code is contributed by Ankita saini
 
</script>
Output: 
Maxvalue = 0.25
Minvalue = -Infinity

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :