# Maximum and minimum isolated vertices in a graph

Given ‘n’ vertices and ‘m’ edges of a graph. Find the minimum number and maximum number of isolated vertices that are possible in the graph.
Examples:

```Input : 4 2
Output : Minimum 0
Maximum 1

1--2 3--4 <---Minimum -  No isolated vertex
1--2   <--- Maximum - 1 Isolated vertex i.e. 4
|
3

Input : 5 2
Output : Minimum 1
Maximum 2

1--2 3--4 5  <-- Minimum - 1 isolated vertex i.e. 5
1--2   4  5  <-- Maximum - 2 isolated vertex i.e. 4 and 5
|
3
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

1. For minimum number of isolated vertices, we connect two vertices by only one edge. Each vertex should be only connected to one other vertex and each vertex should have degree one
Thus if the number of edges is ‘m’, and if ‘n’ vertices <=2 * 'm' edges, there is no isolated vertex and if this condition is false, there are n-2*m isolated vertices.
2. For maximum number of isolated vertices, we create a polygon such that each vertex is connected to other vertex and each vertex has a diagonal with every other vertex. Thus, number of diagonals from one vertex to other vertex of n sided polygon is n*(n-3)/2 and number of edges connecting adjacent vertices is n. Thus, total number of edges is n*(n-1)/2.

Below is the implementation of above approach.

## C++

 `// CPP program to find maximum/minimum number ` `// of isolated vertices. ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find out the minimum and  ` `// maximum number of isolated vertices ` `void` `find(``int` `n, ``int` `m) ` `{ ` `    ``// Condition to find out minimum number  ` `    ``// of isolated vertices ` `    ``if` `(n <= 2 * m) ` `        ``cout << ``"Minimum "` `<< 0 << endl; ` `    ``else` `        ``cout << ``"Minimum "` `<< n - 2 * m << endl; ` ` `  `    ``// To find out maximum number of isolated  ` `    ``// vertices ` `    ``// Loop to find out value of number of  ` `    ``// vertices that are connected ` `    ``int` `i; ` `    ``for` `(i = 1; i <= n; i++) { ` `        ``if` `(i * (i - 1) / 2 >= m) ` `            ``break``; ` `    ``} ` `    ``cout << ``"Maximum "` `<< n - i; ` `} ` ` `  `// Driver Function ` `int` `main() ` `{ ` `    ``// Number of vertices ` `    ``int` `n = 4; ` ` `  `    ``// Number of edges ` `    ``int` `m = 2; ` ` `  `    ``// Calling the function to maximum and  ` `    ``// minimum number of isolated vertices ` `    ``find(n, m); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find maximum/minimum number ` `// of isolated vertices. ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` `  `  ` `  `// Function to find out the minimum and  ` `// maximum number of isolated vertices ` ` ``static` `void` `find(``int` `n, ``int` `m) ` `{ ` `    ``// Condition to find out minimum number  ` `    ``// of isolated vertices ` `    ``if` `(n <= ``2` `* m) ` `        ``System.out.println( ``"Minimum "` `+ ``0``); ` `    ``else` `        ``System.out.println( ``"Minimum "` `+ (n - ``2` `* m)); ` ` `  `    ``// To find out maximum number of isolated  ` `    ``// vertices ` `    ``// Loop to find out value of number of  ` `    ``// vertices that are connected ` `    ``int` `i; ` `    ``for` `(i = ``1``; i <= n; i++) { ` `        ``if` `(i * (i - ``1``) / ``2` `>= m) ` `            ``break``; ` `    ``} ` `    ``System.out.println( ``"Maximum "` `+ (n - i)); ` `} ` ` `  `// Driver Function ` ` `  `    ``public` `static` `void` `main (String[] args) { ` `     `  `    ``// Number of vertices ` `    ``int` `n = ``4``; ` ` `  `    ``// Number of edges ` `    ``int` `m = ``2``; ` ` `  `    ``// Calling the function to maximum and  ` `    ``// minimum number of isolated vertices ` `    ``find(n, m); ` `    ``} ` `} ` `//This code is contributed by inder_verma. `

## Python3

 `# Python3 program to find maximum/minimum  ` `# number of isolated vertices.  ` ` `  `# Function to find out the minimum and  ` `# maximum number of isolated vertices  ` `def` `find(n, m) : ` ` `  `    ``# Condition to find out minimum  ` `    ``# number of isolated vertices  ` `    ``if` `(n <``=` `2` `*` `m): ` `        ``print``(``"Minimum "``, ``0``)  ` `    ``else``: ` `        ``print``(``"Minimum "``, n ``-` `2` `*` `m )  ` ` `  `    ``# To find out maximum number of  ` `    ``# isolated vertices  ` `    ``# Loop to find out value of number  ` `    ``# of vertices that are connected  ` `    ``for` `i ``in` `range``(``1``, n ``+` `1``):  ` `        ``if` `(i ``*` `(i ``-` `1``) ``/``/` `2` `>``=` `m):  ` `            ``break` `     `  `    ``print``(``"Maximum "``, n ``-` `i) ` `     `  `# Driver Code ` `if` `__name__ ``=``=` `'__main__'``: ` `     `  `    ``# Number of vertices  ` `    ``n ``=` `4` ` `  `    ``# Number of edges  ` `    ``m ``=` `2` ` `  `    ``# Calling the function to maximum and  ` `    ``# minimum number of isolated vertices  ` `    ``find(n, m) ` ` `  `# This code is contributed by  ` `# SHUBHAMSINGH10 `

## C#

 `// C# program to find maximum/ ` `// minimum number of isolated vertices.  ` `using` `System; ` ` `  `class` `GFG ` `{  ` ` `  `// Function to find out the  ` `// minimum and maximum number ` `// of isolated vertices  ` `static` `void` `find(``int` `n, ``int` `m)  ` `{  ` `    ``// Condition to find out minimum  ` `    ``// number of isolated vertices  ` `    ``if` `(n <= 2 * m)  ` `        ``Console.WriteLine(``"Minimum "` `+ 0);  ` `    ``else` `        ``Console.WriteLine(``"Minimum "` `+  ` `                         ``(n - 2 * m));  ` ` `  `    ``// To find out maximum number  ` `    ``// of isolated vertices  ` `    ``// Loop to find out value of  ` `    ``// number of vertices that  ` `    ``// are connected  ` `    ``int` `i;  ` `    ``for` `(i = 1; i <= n; i++)  ` `    ``{  ` `        ``if` `(i * (i - 1) / 2 >= m)  ` `            ``break``;  ` `    ``}  ` `    ``Console.WriteLine(``"Maximum "` `+ (n - i));  ` `}  ` ` `  `// Driver Code  ` `public` `static` `void` `Main ()  ` `{  ` ` `  `    ``// Number of vertices  ` `    ``int` `n = 4;  ` `     `  `    ``// Number of edges  ` `    ``int` `m = 2;  ` `     `  `    ``// Calling the function to   ` `    ``// maximum and minimum number ` `    ``// of isolated vertices  ` `    ``find(n, m);  ` `}  ` `}  ` ` `  `// This code is contributed  ` `// by inder_verma.  `

## PHP

 `= ``\$m``) ` `            ``break``; ` `    ``} ` `    ``echo` `"Maximum "` `, (``\$n` `- ``\$i``); ` `} ` ` `  `// Driver Code ` ` `  `// Number of vertices ` `\$n` `= 4; ` ` `  `// Number of edges ` `\$m` `= 2; ` ` `  `// Calling the function to  ` `// maximum and minimum number  ` `// of isolated vertices ` `find(``\$n``, ``\$m``); ` ` `  `// This code is contributed  ` `// by inder_verma ` `?> `

Output:

```Minimum 0
Maximum 1
```

Time Complexity – O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : inderDuMCA, SHUBHAMSINGH10

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.