Skip to content
Related Articles
Open in App
Not now

Related Articles

Maximum 0’s between two immediate 1’s in binary representation

Improve Article
Save Article
  • Difficulty Level : Hard
  • Last Updated : 31 May, 2022
Improve Article
Save Article

Given a number n, the task is to find the maximum 0’s between two immediate 1’s in binary representation of given n. Return -1 if binary representation contains less than two 1’s.

Examples : 

Input : n = 47
Output: 1
// binary of n = 47 is 101111

Input : n = 549
Output: 3
// binary of n = 549 is 1000100101

Input : n = 1030
Output: 7
// binary of n = 1030 is 10000000110

Input : n = 8
Output: -1
// There is only one 1 in binary representation
// of 8.

The idea to solve this problem is to use shift operator. We just need to find the position of two immediate 1’s in binary representation of n and maximize the difference of these position. 

  • Return -1 if number is 0 or is a power of 2. In these cases there are less than two 1’s in binary representation.
  • Initialize variable prev with position of first right most 1, it basically stores the position of previously seen 1.
  • Now take another variable cur which stores the position of immediate 1 just after prev.
  • Now take difference of cur – prev – 1, it will be the number of 0’s between to immediate 1’s and compare it with previous max value of 0’s and update prev i.e; prev=cur for next iteration.
  • Use auxiliary variable setBit, which scans all bits of n and helps to detect if current bits is 0 or 1.
  • Initially check if N is 0 or power of 2.

Below is the implementation of the above idea :

C++




// C++ program to find maximum number of 0's
// in binary representation of a number
#include <bits/stdc++.h>
using namespace std;
 
// Returns maximum 0's between two immediate
// 1's in binary representation of number
int maxZeros(int n)
{
    // If there are no 1's or there is only
    // 1, then return -1
    if (n == 0 || (n & (n - 1)) == 0)
        return -1;
 
    // loop to find position of right most 1
    // here sizeof int is 4 that means total 32 bits
    int setBit = 1, prev = 0, i;
    for (i = 1; i <= sizeof(int) * 8; i++) {
        prev++;
 
        // we have found right most 1
        if ((n & setBit) == setBit) {
            setBit = setBit << 1;
            break;
        }
 
        // left shift setBit by 1 to check next bit
        setBit = setBit << 1;
    }
 
    // now loop through for remaining bits and find
    // position of immediate 1 after prev
    int max0 = INT_MIN, cur = prev;
    for (int j = i + 1; j <= sizeof(int) * 8; j++) {
        cur++;
 
        // if current bit is set, then compare
        // difference of cur - prev -1 with
        // previous maximum number of zeros
        if ((n & setBit) == setBit) {
            if (max0 < (cur - prev - 1))
                max0 = cur - prev - 1;
 
            // update prev
            prev = cur;
        }
        setBit = setBit << 1;
    }
    return max0;
}
 
// Driver program to run the case
int main()
{
    int n = 549;
 
    // Initially check that number must not
    // be 0 and power of 2
    cout << maxZeros(n);
    return 0;
}

Java




// Java program to find maximum number of 0's
// in binary representation of a number
class GFG {
 
    // Returns maximum 0's between two immediate
    // 1's in binary representation of number
    static int maxZeros(int n) {
        // If there are no 1's or there is only
        // 1, then return -1
        if (n == 0 || (n & (n - 1)) == 0) {
            return -1;
        }
        //int size in java is 4 byte
        byte b = 4;
        // loop to find position of right most 1
        // here sizeof int is 4 that means total 32 bits
        int setBit = 1, prev = 0, i;
        for (i = 1; i <= b* 8; i++) {
            prev++;
 
            // we have found right most 1
            if ((n & setBit) == setBit) {
                setBit = setBit << 1;
                break;
            }
 
            // left shift setBit by 1 to check next bit
            setBit = setBit << 1;
        }
 
        // now loop through for remaining bits and find
        // position of immediate 1 after prev
        int max0 = Integer.MIN_VALUE, cur = prev;
        for (int j = i + 1; j <= b * 8; j++) {
            cur++;
 
            // if current bit is set, then compare
            // difference of cur - prev -1 with
            // previous maximum number of zeros
            if ((n & setBit) == setBit) {
                if (max0 < (cur - prev - 1)) {
                    max0 = cur - prev - 1;
                }
 
                // update prev
                prev = cur;
            }
            setBit = setBit << 1;
        }
        return max0;
    }
 
    // Driver program to run the case
    static public void main(String[] args) {
        int n = 549;
 
        // Initially check that number must not
        // be 0 and power of 2
        System.out.println(maxZeros(n));
    }
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find maximum number of
# 0's in binary representation of a number
 
# Returns maximum 0's between two immediate
# 1's in binary representation of number
def maxZeros(n):
    # If there are no 1's or there is
    # only 1, then return -1
    if (n == 0 or (n & (n - 1)) == 0):
        return -1
 
    # loop to find position of right most 1
    # here sizeof is 4 that means total 32 bits
    setBit = 1
    prev = 0
    i = 1
    while(i < 33):
        prev += 1
 
        # we have found right most 1
        if ((n & setBit) == setBit):
            setBit = setBit << 1
            break
 
        # left shift setBit by 1 to check next bit
        setBit = setBit << 1
 
    # now loop through for remaining bits and find
    # position of immediate 1 after prev
    max0 = -10**9
    cur = prev
    for j in range(i + 1, 33):
        cur += 1
 
        # if current bit is set, then compare
        # difference of cur - prev -1 with
        # previous maximum number of zeros
        if ((n & setBit) == setBit):
            if (max0 < (cur - prev - 1)):
                max0 = cur - prev - 1
 
            # update prev
            prev = cur
        setBit = setBit << 1
 
    return max0
 
# Driver Code
n = 549
 
# Initially check that number must not
# be 0 and power of 2
print(maxZeros(n))
 
# This code is contributed by Mohit Kumar

C#




// C# program to find maximum number of 0's
// in binary representation of a number
using System;
 
class GFG {
 
    // Returns maximum 0's between two immediate
    // 1's in binary representation of number
    static int maxZeros(int n)
    {
        // If there are no 1's or there is only
        // 1, then return -1
        if (n == 0 || (n & (n - 1)) == 0)
            return -1;
 
        // loop to find position of right most 1
        // here sizeof int is 4 that means total 32 bits
        int setBit = 1, prev = 0, i;
        for (i = 1; i <= sizeof(int) * 8; i++) {
            prev++;
 
            // we have found right most 1
            if ((n & setBit) == setBit) {
                setBit = setBit << 1;
                break;
            }
 
            // left shift setBit by 1 to check next bit
            setBit = setBit << 1;
        }
 
        // now loop through for remaining bits and find
        // position of immediate 1 after prev
        int max0 = int.MinValue, cur = prev;
        for (int j = i + 1; j <= sizeof(int) * 8; j++) {
            cur++;
 
            // if current bit is set, then compare
            // difference of cur - prev -1 with
            // previous maximum number of zeros
            if ((n & setBit) == setBit) {
                if (max0 < (cur - prev - 1))
                    max0 = cur - prev - 1;
 
                // update prev
                prev = cur;
            }
            setBit = setBit << 1;
        }
        return max0;
    }
 
    // Driver program to run the case
    static public void Main()
    {
        int n = 549;
 
        // Initially check that number must not
        // be 0 and power of 2
        Console.WriteLine(maxZeros(n));
    }
}
 
// This code is contributed by vt_m.

Javascript




<script>
 
// JavaScript program to find maximum number of 0's
// in binary representation of a number
 
// Returns maximum 0's between two immediate
// 1's in binary representation of number
function maxZeros(n)
{
     
    // If there are no 1's or there is only
    // 1, then return -1
    if (n == 0 || (n & (n - 1)) == 0)
    {
        return -1;
    }
     
    // int size in java is 4 byte
    let b = 4;
     
    // Loop to find position of right most 1
    // here sizeof int is 4 that means total 32 bits
    let setBit = 1, prev = 0, i;
     
    for(i = 1; i <= b* 8; i++)
    {
        prev++;
 
        // We have found right most 1
        if ((n & setBit) == setBit)
        {
            setBit = setBit << 1;
            break;
        }
 
        // Left shift setBit by 1
        // to check next bit
        setBit = setBit << 1;
    }
 
    // Now loop through for remaining bits
    // and find position of immediate 1 after prev
    let max0 = Number.MIN_VALUE, cur = prev;
    for(let j = i + 1; j <= b * 8; j++)
    {
        cur++;
 
        // If current bit is set, then compare
        // difference of cur - prev -1 with
        // previous maximum number of zeros
        if ((n & setBit) == setBit)
        {
            if (max0 < (cur - prev - 1))
            {
                max0 = cur - prev - 1;
            }
 
            // Update prev
            prev = cur;
        }
        setBit = setBit << 1;
    }
    return max0;
}
 
// Driver Code
let n = 549;
 
// Initially check that number must not
// be 0 and power of 2
document.write(maxZeros(n));
 
// This code is contributed by code_hunt
 
</script>

Output: 

3

Time Complexity: O(1), because it is taking constant time irrespective of the input n.

Auxiliary Space: O(1)
This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!