Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Maximize the sum of modulus with every Array element

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given an array A[] consisting of N positive integers, the task is to find the maximum possible value of: 
 

F(M) = M % A[0] + M % A[1] + …. + M % A[N -1] where M can be any integer value

Examples: 
 

Input: arr[] = {3, 4, 6} 
Output: 10 
Explanation: 
The maximum sum occurs for M = 11. 
(11 % 3) + (11 % 4) + (11 % 6) = 2 + 3 + 5 = 10
Input: arr[] = {2, 5, 3} 
Output:
Explanation: 
The maximum sum occurs for M = 29. 
(29 % 2) + (29 % 5) + (29 % 3) = 1 + 4 + 2 = 7. 
 

 

Approach: 
Follow the steps below to solve the problem: 
 

  1. Calculate the LCM of all array elements.
  2. If M is equal to the LCM of the array, then F(M) = 0 i.e. the minimum possible value of the F(M). This is because, M % a[i] will always be 0 for every ith index.
  3. For M = LCM of array elements – 1, F(M) is maximized. This is because, M % a[i] is equal to a[i] – 1 for every ith index, which is the maximum possible.
  4. Hence, the maximum possible value of F(M) can be Sum of array elements – N.

Below is the implementation of the above approach: 
 

C++




// C++ program to find the
// maximum sum of modulus
// with every array element
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the
// maximum sum of modulus
// with every array element
int maxModulosum(int a[], int n)
{
    int sum = 0;
 
    // Sum of array elements
    for (int i = 0; i < n; i++) {
        sum += a[i];
    }
 
    // Return the answer
    return sum - n;
}
 
// Driver Program
int main()
{
    int a[] = { 3, 4, 6 };
    int n = sizeof(a) / sizeof(a[0]);
    cout << maxModulosum(a, n);
 
    return 0;
}

Java




// Java program to find the maximum
// sum of modulus with every array
// element
import java.io.*;
 
class GFG{
 
// Function to return the maximum
// sum of modulus with every array
// element
static int maxModulosum(int a[], int n)
{
    int sum = 0;
     
    // Sum of array elements
    for(int i = 0; i < n; i++)
    {
       sum += a[i];
    }
     
    // Return the answer
    return sum - n;
}
     
// Driver Code
public static void main (String[] args)
{
    int a[] = new int[]{ 3, 4, 6 };
    int n = a.length;
     
    System.out.println(maxModulosum(a, n));
}
}
 
// This code is contributed by Shubham Prakash

Python3




# Python3 program to find the
# maximum sum of modulus
# with every array element
 
# Function to return the
# maximum sum of modulus
# with every array element
def maxModulosum(a, n):
 
    sum1 = 0;
 
    # Sum of array elements
    for i in range(0, n):
        sum1 += a[i];
     
    # Return the answer
    return sum1 - n;
 
# Driver Code
a = [ 3, 4, 6 ];
n = len(a);
print(maxModulosum(a, n));
 
# This code is contributed by Code_Mech

C#




// C# program to find the maximum
// sum of modulus with every array
// element
using System;
class GFG{
 
// Function to return the maximum
// sum of modulus with every array
// element
static int maxModulosum(int []a, int n)
{
    int sum = 0;
     
    // Sum of array elements
    for(int i = 0; i < n; i++)
    {
        sum += a[i];
    }
     
    // Return the answer
    return sum - n;
}
     
// Driver Code
public static void Main(String[] args)
{
    int []a = new int[]{ 3, 4, 6 };
    int n = a.Length;
     
    Console.Write(maxModulosum(a, n));
}
}
 
// This code is contributed
// by shivanisinghss2110

Javascript




<script>
 
    // Javascript program to find the
    // maximum sum of modulus
    // with every array element
     
    // Function to return the
    // maximum sum of modulus
    // with every array element
    function maxModulosum(a, n)
    {
        let sum = 0;
 
        // Sum of array elements
        for (let i = 0; i < n; i++) {
            sum += a[i];
        }
 
        // Return the answer
        return sum - n;
    }
      
    let a = [ 3, 4, 6 ];
    let n = a.length;
    document.write(maxModulosum(a, n));
 
</script>

Output: 

10

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Last Updated : 14 Jan, 2022
Like Article
Save Article
Similar Reads
Related Tutorials