# Maximize the sum of array by multiplying prefix of array with -1

Given an array of elements ‘arr’, the task is to maximise the sum of the elements of this array after performing the following operation:
You can take any prefix of ‘arr’ and multiply each element of the prefix with ‘-1’.
In the first line, print the maximised sum then in the next line, print the index upto which the sequence of prefixes were chosen.

Examples:

Input: arr = {1, -2, -3, 4}
Output: 10
2 1 3 2
Flip the prefix till 2nd element then the sequence is -1  2 -3  4
Flip the prefix till 1st element then the sequence is  1  2 -3  4
Flip the prefix till 3rd element then the sequence is -1 -2  3  4
Flip the prefix till 2nd element then the sequence is  1  2  3  4
And, the final maximised sum is 10

Input: arr = {1, 2, 3, 4}
Output: 10
As, all the elements are already positive.


## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: The max sum will always be as all the numbers of the array can be changed from negative to positive with the given operation.

• Traverse the array from left to right, if the element at index ‘i’ is negative then choose ‘i’ as the ending index of the prefix array and multiply each element by ‘-1’.
• Due to the operation in the previous step, all the elements in the array before index ‘i’ must be negative. So, take the prefix array ending at index ‘i-1’ and apply the same operation again to change all the elements to positive.
• Repeat the above steps until the complete array has been traversed and print the sum of all the elements along with all the ending indices of the chosen prefix arrays in the end.

Below is the implementation of the above approach:

## C++

 // C++ implementation of the approach  #include  using namespace std;     void maxSum(int *a, int n)  {             vector<int> l;              // To store sum      int s = 0;         // To store ending indices       // of the chosen prefix array vect      for (int i = 0; i < n; i++)      {             // Adding the absolute           // value of a[i]          s += abs(a[i]);          if (a[i] >= 0)              continue;             // If i == 0 then there is no index           // to be flipped in (i-1) position          if (i == 0)              l.push_back(i + 1);          else         {              l.push_back(i + 1);              l.push_back(i);          }                     }                    // print the maximised sum      cout << s << endl;         // print the ending indices       // of the chosen prefix arrays      for (int i = 0; i < l.size(); i++)      cout << l[i] << " ";     }     // Driver Code      int main()  {      int n = 4;      int a[] = {1, -2, -3, 4};      maxSum(a, n);  }      // This code is contributed by  // Surendra_Gangwar

## Java

 // Java implementation of the approach  import java.util.*;     class GFG   {         static void maxSum(int []a, int n)  {      Vector l = new Vector();             // To store sum      int s = 0;         // To store ending indices       // of the chosen prefix array vect      for (int i = 0; i < n; i++)      {             // Adding the absolute           // value of a[i]          s += Math.abs(a[i]);          if (a[i] >= 0)              continue;             // If i == 0 then there is no index           // to be flipped in (i-1) position          if (i == 0)              l.add(i + 1);          else         {              l.add(i + 1);              l.add(i);          }      }         // print the maximised sum      System.out.println(s);         // print the ending indices       // of the chosen prefix arrays      for (int i = 0; i < l.size(); i++)      System.out.print(l.get(i) + " ");  }     // Driver Code   public static void main(String[] args)   {      int n = 4;      int a[] = {1, -2, -3, 4};      maxSum(a, n);  }  }     // This code is contributed by 29AjayKumar

## Python3

 # Python implementation of the approach  def maxSum(arr, n):      # To store sum      s = 0        # To store ending indices       # of the chosen prefix arrays      l = []      for i in range(len(a)):             # Adding the absolute           # value of a[i]          s += abs(a[i])          if (a[i] >= 0):              continue            # If i == 0 then there is           # no index to be flipped           # in (i-1) position          if (i == 0):              l.append(i + 1)          else:              l.append(i + 1)              l.append(i)         # print the       # maximised sum      print(s)         # print the ending indices       # of the chosen prefix arrays      print(*l)         n = 4 a = [1, -2, -3, 4]  maxSum(a, n)

## C#

 // C# implementation of the approach  using System;  using System.Collections.Generic;      class GFG   {         static void maxSum(int []a, int n)  {      List<int> l = new List<int>();             // To store sum      int s = 0;         // To store ending indices       // of the chosen prefix array vect      for (int i = 0; i < n; i++)      {             // Adding the absolute           // value of a[i]          s += Math.Abs(a[i]);          if (a[i] >= 0)              continue;             // If i == 0 then there is no index           // to be flipped in (i-1) position          if (i == 0)              l.Add(i + 1);          else         {              l.Add(i + 1);              l.Add(i);          }      }         // print the maximised sum      Console.WriteLine(s);         // print the ending indices       // of the chosen prefix arrays      for (int i = 0; i < l.Count; i++)      Console.Write(l[i] + " ");  }     // Driver Code   public static void Main(String[] args)   {      int n = 4;      int []a = {1, -2, -3, 4};      maxSum(a, n);  }  }     // This code is contributed by PrinciRaj1992

## PHP

 = 0)              continue;             // If i == 0 then there is           // no index to be flipped           // in (i-1) position          if ($i == 0)   array_push($l, $i + 1);   else  {   array_push($l, $i + 1);   array_push($l, $i);   }   }     // print the   // maximised sum   echo $s . "\n";         // print the ending indices       // of the chosen prefix arrays      for($i = 0; $i < count($l); $i++)      echo $l[$i] . " ";  }     // Driver Code  $n = 4;  $a = array(1, -2, -3, 4);  maxSum($a, $n);     // This code is contributed by mits  ?>

Output:

10
2 1 3 2


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.