Skip to content
Related Articles

Related Articles

Improve Article

Maximize the profit by selling at-most M products

  • Difficulty Level : Easy
  • Last Updated : 14 May, 2021

Given two lists that contains cost prices CP[] and selling prices SP[] of products respectively. The task is to maximize the profit by selling at-most ‘M’ prodcts. 

Examples: 

Input: N = 5, M = 3 
CP[]= {5, 10, 35, 7, 23} 
SP[] = {11, 10, 0, 9, 19} 
Output:
Profit on 0th product i.e. 11-5 = 6 
Profit on 3rd product i.e. 9-7 = 2 
Selling any other product will not give profit. 
So, total profit = 6+2 = 8.

Input: N = 4, M = 2 
CP[] = {17, 9, 8, 20} 
SP[] = {10, 9, 8, 27} 
Output:
 

Approach:  



  1. Store the profit/loss on buying and selling of each product i.e. SP[i]-CP[i] in an array.
  2. Sort that array in descending order.
  3. Add the positive values up to M values as positive values denote profit.
  4. Return Sum.

Below is the implementation of above approach:  

C++




// C++ implementation of above approach:
#include <bits/stdc++.h>
using namespace std;
 
// Function to find profit
int solve(int N, int M, int cp[], int sp[])
{
    int profit[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array in decending order
    sort(profit, profit + N, greater<int>());
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++) {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
int main()
{
 
    int N = 5, M = 3;
    int CP[] = { 5, 10, 35, 7, 23 };
    int SP[] = { 11, 10, 0, 9, 19 };
 
    cout << solve(N, M, CP, SP);
 
    return 0;
}

Java




// Java implementation of above approach:
import java.util.*;
import java.lang.*;
import java.io.*;
 
class GFG
{
 
// Function to find profit
static int solve(int N, int M,
                 int cp[], int sp[])
{
    Integer []profit = new Integer[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array
    // in decending order
    Arrays.sort(profit, Collections.reverseOrder());
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
public static void main(String args[])
{
    int N = 5, M = 3;
    int CP[] = { 5, 10, 35, 7, 23 };
    int SP[] = { 11, 10, 0, 9, 19 };
 
    System.out.println(solve(N, M, CP, SP));
}
}
 
// This code is contributed
// by Subhadeep Gupta

Python3




# Python3 implementation
# of above approach
 
# Function to find profit
def solve(N, M, cp, sp) :
     
    # take empty list
    profit = []
     
    # Calculating profit
    # for each gadget
    for i in range(N) :
        profit.append(sp[i] - cp[i])
 
    # sort the profit array
    # in decending order
    profit.sort(reverse = True)
 
    sum = 0
     
    # check for best M profits
    for i in range(M) :
        if profit[i] > 0 :
            sum += profit[i]
        else :
            break
 
    return sum
 
# Driver Code
if __name__ == "__main__" :
 
    N, M = 5, 3
    CP = [5, 10, 35, 7, 23]
    SP = [11, 10, 0, 9, 19]
     
    # function calling
    print(solve(N, M, CP, SP))
     
# This code is contributed
# by ANKITRAI1

C#




// C# implementation of above approach:
using System;
 
class GFG
{
 
// Function to find profit
static int solve(int N, int M,
                 int[] cp, int[] sp)
{
    int[] profit = new int[N];
 
    // Calculating profit for each gadget
    for (int i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
 
    // sort the profit array
    // in descending order
    Array.Sort(profit);
    Array.Reverse(profit);
 
    // variable to calculate total profit
    int sum = 0;
 
    // check for best M profits
    for (int i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
 
    return sum;
}
 
// Driver Code
public static void Main()
{
    int N = 5, M = 3;
    int[] CP = { 5, 10, 35, 7, 23 };
    int[] SP = { 11, 10, 0, 9, 19 };
 
    Console.Write(solve(N, M, CP, SP));
}
}
 
// This code is contributed
// by ChitraNayal

PHP




<?php
// PHP implementation of above approach:
 
// Function to find profit
function solve($N, $M, &$cp, &$sp)
{
    $profit = array_fill(0, $N, NULL);
 
    // Calculating profit for each gadget
    for ($i = 0; $i < $N; $i++)
        $profit[$i] = $sp[$i] - $cp[$i];
 
    // sort the profit array
    // in descending order
    rsort($profit);
 
    // variable to calculate
    // total profit
    $sum = 0;
 
    // check for best M profits
    for ($i = 0; $i < $M; $i++)
    {
        if ($profit[$i] > 0)
            $sum += $profit[$i];
        else
            break;
    }
 
    return $sum;
}
 
// Driver Code
$N = 5;
$M = 3;
$CP = array( 5, 10, 35, 7, 23 );
$SP = array( 11, 10, 0, 9, 19 );
 
echo solve($N, $M, $CP, $SP);
 
// This code is contributed
// by ChitraNayal
?>

Javascript




<script>
 
// Javascript implementation of above approach:
     
// Function to find profit
function solve(N, M, cp, sp)
{
    let profit = new Array(N);
     
    // Calculating profit for each gadget
    for(let i = 0; i < N; i++)
        profit[i] = sp[i] - cp[i];
     
    // Sort the profit array
    // in decending order
    profit.sort(function(a, b){return b - a;});
     
    // Variable to calculate total profit
    let sum = 0;
     
    // Check for best M profits
    for(let i = 0; i < M; i++)
    {
        if (profit[i] > 0)
            sum += profit[i];
        else
            break;
    }
    return sum;
}
 
// Driver Code
let N = 5, M = 3;
let CP = [ 5, 10, 35, 7, 23 ];
let SP = [ 11, 10, 0, 9, 19 ];
 
document.write(solve(N, M, CP, SP));
 
// This code is contributed by rag2127
 
</script>
Output: 
8

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :