Given a binary string S of size N, the task is to find the maximum number of operations that can be performed on S, by selecting any substring “01” and removing any character from it in a single move, reducing the length of the string by 1.
Examples:
Input: S = “001111”, N = 6
Output: 5
Explanation:
One way to perform the operations is:
- Select the substring “01” over the range [1, 2] and erase the S[2] ( = ‘1’). The string modifies to “00111”.
- Select the substring “01” over the range [1, 2] and erase the S[2] ( = ‘1’). The string modifies to “0011”.
- Select the substring “01” over the range [1, 2] and erase the S[2] ( = ‘1’). The string modifies to “001”.
- Select the substring “01” over the range [1, 2] and erase the S[1] ( = ‘0’). The string modifies to “01”.
- Select the substring “01” over the range [0, 1] and erase the S[1] ( = ‘1’). The string modifies to “0”.
- Now no characters can be removed.
Therefore, the total number of operations performed is 5, which is the maximum possible.
Input: S=”0101″, N=4
Output: 3
Approach: The given problem can be solved based on the following observations:
- Any 1s present in the prefix of S cannot be removed because there are no 0s before them.
- Any 0s present in the suffix of S cannot be removed because there are no 1s after them.
- All other characters are removable.
- If there are X removable characters, at most X-1 operations can be performed because, eventually, only a single character will remain which cannot be removed.
Follow the steps below to solve the problem:
- Initialize two variables, say X and Y as 0, which store the number of 0s in the suffix and the number of 1s in the prefix respectively, which cannot be removed.
- Iterate over the characters of the string S and perform the following steps:
- If the current character is ‘1′, increment Y by 1.
- Otherwise, stop traversing.
- Iterate over the characters of the string S in reverse order and perform the following steps:
- If the current character is 0, increment X by 1.
- Otherwise, stop traversing.
- If the sum of X and Y is equal to N, print 0 as there are no removable characters.
- Otherwise, print N-(X+Y)-1 as the answer.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int maxOperations(string S, int N)
{
int X = 0;
int Y = 0;
for ( int i = 0; i < N; i++) {
if (S[i] == '0' )
break ;
Y++;
}
for ( int i = N - 1; i >= 0; i--) {
if (S[i] == '1' )
break ;
X++;
}
if (N == X + Y)
return 0;
return N - (X + Y) - 1;
}
int main()
{
string S = "001111" ;
int N = S.length();
cout << maxOperations(S, N) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG{
static int maxOperations(String S, int N)
{
int X = 0 ;
int Y = 0 ;
for ( int i = 0 ; i < N; i++)
{
if (S.charAt(i) == '0' )
break ;
Y++;
}
for ( int i = N - 1 ; i >= 0 ; i--)
{
if (S.charAt(i) == '1' )
break ;
X++;
}
if (N == X + Y)
return 0 ;
return N - (X + Y) - 1 ;
}
public static void main(String[] args)
{
String S = "001111" ;
int N = S.length();
System.out.println(maxOperations(S, N));
}
}
|
Python3
def maxOperations(S, N):
X = 0
Y = 0
for i in range (N):
if (S[i] = = '0' ):
break
Y + = 1
i = N - 1
while (i > = 0 ):
if (S[i] = = '1' ):
break
X + = 1
if (N = = X + Y):
return 0
return N - (X + Y) - 1
if __name__ = = '__main__' :
S = "001111"
N = len (S)
print (maxOperations(S, N))
|
C#
using System;
class GFG{
static int maxOperations(String S, int N)
{
int X = 0;
int Y = 0;
for ( int i = 0; i < N; i++)
{
if (S[i] == '0' )
break ;
Y++;
}
for ( int i = N - 1; i >= 0; i--)
{
if (S[i] == '1' )
break ;
X++;
}
if (N == X + Y)
return 0;
return N - (X + Y) - 1;
}
static void Main()
{
String S = "001111" ;
int N = S.Length;
Console.WriteLine(maxOperations(S, N));
}
}
|
Javascript
<script>
function maxOperations(S, N)
{
let X = 0;
let Y = 0;
for (let i = 0; i < N; i++)
{
if (S[i] == '0' )
break ;
Y++;
}
for (let i = N - 1; i >= 0; i--)
{
if (S[i] == '1' )
break ;
X++;
}
if (N == X + Y)
return 0;
return N - (X + Y) - 1;
}
let S = "001111" ;
let N = S.length;
document.write(maxOperations(S, N));
</script>
|
Time complexity: O(N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
13 Jul, 2021
Like Article
Save Article