Maximize the last Array element as per the given conditions

Given an array arr[] consisting of N integers, rearrange the array such that it satisfies the following conditions:

  1. arr[0] must be 1.
  2. Difference between adjacent array elements should not exceed 1, that is, arr[i] – arr[i-1] ≤ 1 for all 1 ≤ i < N.

The permissible operations are as follows:

  1. Rearrange the elements in any way.
  2. Reduce any element to any number ≥ 1.

The task is to find the maximum possible value that can be placed at the last index of the array.

Examples:

Input: arr[] = {3, 1, 3, 4} 
Output:
Explanation: 
Subtracting 1 from the first element modifies the array to {2, 1, 3, 4}. 
Swapping the first two elements modifes the array to {1, 2, 3, 4}. 
Therefore, maximum value placed at the last index is 4.



Input: arr[] = {1, 1, 1, 1} 
Output: 1

Approach: 
To solve the given problem, sort the given array and balance it according to the given condition starting from left towards right. Follow the below steps to solve the problem:

  • Sort the array in ascending order.
  • If the first element is not 1, make it 1.
  • Traverse the array over the indices [1, N – 1) and check if every adjacent element has a difference of ≤ 1.
  • If not, decrement the value till the difference becomes ≤ 1.
  • Return the last element of the array.

Below is the implementation of above problem:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to find the maximum possible value
// that can be placed at the last index
int maximizeFinalElement(int arr[], int n)
{
    // Sort array in ascending order
    sort(arr, arr + n);
  
    // If the first element
    // is not equal to 1
    if (arr[0] != 1)
        arr[0] = 1;
  
    // Traverse the array to make
    // difference between adjacent
    // elements <=1
    for (int i = 1; i < n; i++) {
        if (arr[i] - arr[i - 1] > 1) {
            arr[i] = arr[i - 1] + 1;
        }
    }
    return arr[n - 1];
}
  
// Driver Code
int main()
{
    int n = 4;
    int arr[] = { 3, 1, 3, 4 };
  
    int max = maximizeFinalElement(arr, n);
    cout << max;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to implement
// the above approach
import java.io.*;
import java.util.*;
  
class GFG{
  
// Function to find the maximum possible value
// that can be placed at the last index
public static int maximizeFinalElement(int arr[],
                                       int n)
{
      
    // Sort the array elements
    // in ascending order
    Arrays.sort(arr);
  
    // If the first element is
    // is not equal to 1
    if (arr[0] != 1)
        arr[0] = 1;
  
    // Traverse the array to make
    // difference between adjacent
    // elements <=1
    for(int i = 1; i < n; i++) 
    {
        if (arr[i] - arr[i - 1] > 1)
        {
            arr[i] = arr[i - 1] + 1;
        }
    }
    return arr[n - 1];
}
  
// Driver Code
public static void main (String[] args) 
    int n = 4
    int arr[] = { 3, 1, 3, 4 }; 
    
    int max = maximizeFinalElement(arr, n); 
    System.out.print(max); 
}
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to implement
# the above approach
  
# Function to find the maximum possible value
# that can be placed at the last index
def maximizeFinalElement(arr, n):
      
    # Sort the array elements
    # in ascending order
    arr.sort();
  
    # If the first element is
    # is not equal to 1
    if (arr[0] != 1):
        arr[0] = 1;
  
    # Traverse the array to make
    # difference between adjacent
    # elements <=1
    for i in range(1, n):
        if (arr[i] - arr[i - 1] > 1):
            arr[i] = arr[i - 1] + 1;
  
    return arr[n - 1];
  
# Driver Code
if __name__ == '__main__':
      
    n = 4;
    arr = [3, 1, 3, 4];
      
    max = maximizeFinalElement(arr, n);
    print(max);
      
# This code is contributed by Princi Singh 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# Program to implement
// the above approach
using System;
class GFG{
  
// Function to find the maximum possible value
// that can be placed at the last index
public static int maximizeFinalElement(int []arr,
                                       int n)
{
    // Sort the array elements
    // in ascending order
    Array.Sort(arr);
  
    // If the first element is
    // is not equal to 1
    if (arr[0] != 1)
        arr[0] = 1;
  
    // Traverse the array to make
    // difference between adjacent
    // elements <=1
    for (int i = 1; i < n; i++)
    {
        if (arr[i] - arr[i - 1] > 1) 
        {
            arr[i] = arr[i - 1] + 1;
        }
    }
  
    return arr[n - 1];
}
  
// Driver Code
public static void Main(String[] args) 
{
    int n = 4;
    int []arr = { 3, 1, 3, 4 };
  
    int max = maximizeFinalElement(arr, n);
    Console.WriteLine(max);
}
}
  
// This code is contributed by sapnasingh4991

chevron_right


Output: 

4

Time Complexity: O(NlogN)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.