Maximize the Expression | Bit Manipulation
Given two positive integers A and B. Let’s define D such that B AND D = D. The task is to maximize the expression A XOR D.
Examples:
Input: A = 11 B = 4 Output: 15 Take D = 4 as (B AND D) = (4 AND 4) = 4. Also, (A XOR D) = (11 XOR 4) = 15 which is the maximum according to the given condition. Input: A = 9 and B = 13 Output: 13
Naive approach: Since B AND D = D, D will always be smaller than or equal to B. Hence, one can run a loop from 1 to B and check whether the given conditions are satisfied or not.
Efficient approach: Instead of running a loop and checking for each D, the maximum value of the expression (A XOR D) can be easily calculated using Bit Manipulation techniques.
Let’s take an example to understand the way to approach the problem:
A = 11 = 1011, B = 14 = 1110 Let's assume D = abcd in base 2 notation B AND D: 1110 A XOR D: 1011 abcd abcd ------ ------ abcd ???? At 0th place: (0 AND d) = d implies d = 0 At 1st place: (1 AND c) = c implies c = 0, 1 but to maximize (A XOR D), take c = 0 At 2nd place: (1 AND b) = b implies b = 0, 1 but to maximize (A XOR D), take b = 1 At 3rd place: (1 AND a) = a implies a = 0, 1 but to maximize (A XOR D), take a = 0 Hence, D = 0100 = 4 and maximum value of (A XOR D) = (11 XOR 4) = 15.
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; #define MAX 32 // Function to return the value of // the maximized expression int maximizeExpression( int a, int b) { int result = a; // int can have 32 bits for ( int bit = MAX - 1; bit >= 0; bit--) { // Consider the ith bit of D to be 1 int bitOfD = 1 << bit; // Calculate the value of (B AND bitOfD) int x = b & bitOfD; // Check if bitOfD satisfies (B AND D = D) if (x == bitOfD) { // Check if bitOfD can maximize (A XOR D) int y = result & bitOfD; if (y == 0) { result = result ^ bitOfD; } } // Note that we do not need to consider ith bit of D // to be 0 because if above condition are not satisfied // then value of result will not change // which is similar to considering bitOfD = 0 // as result XOR 0 = result } return result; } // Driver code int main() { int a = 11, b = 14; cout << maximizeExpression(a, b); return 0; } |
Java
// Java implementation of the approach class GFG { final static int MAX = 32 ; // Function to return the value of // the maximized expression static int maximizeExpression( int a, int b) { int result = a; // int can have 32 bits for ( int bit = MAX - 1 ; bit >= 0 ; bit--) { // Consider the ith bit of D to be 1 int bitOfD = 1 << bit; // Calculate the value of (B AND bitOfD) int x = b & bitOfD; // Check if bitOfD satisfies (B AND D = D) if (x == bitOfD) { // Check if bitOfD can maximize (A XOR D) int y = result & bitOfD; if (y == 0 ) { result = result ^ bitOfD; } } // Note that we do not need to consider ith bit of D // to be 0 because if above condition are not satisfied // then value of result will not change // which is similar to considering bitOfD = 0 // as result XOR 0 = result } return result; } // Driver code public static void main (String[] args) { int a = 11 , b = 14 ; System.out.println(maximizeExpression(a, b)); } } // This code is contributed by AnkitRai01 |
Python3
# Python3 implementation of the approach MAX = 32 # Function to return the value of # the maximized expression def maximizeExpression(a, b) : result = a # int can have 32 bits for bit in range ( MAX - 1 , - 1 , - 1 ) : # Consider the ith bit of D to be 1 bitOfD = 1 << bit # Calculate the value of (B AND bitOfD) x = b & bitOfD # Check if bitOfD satisfies (B AND D = D) if (x = = bitOfD) : # Check if bitOfD can maximize (A XOR D) y = result & bitOfD if (y = = 0 ) : result = result ^ bitOfD # Note that we do not need to consider ith bit of D # to be 0 because if above condition are not satisfied # then value of result will not change # which is similar to considering bitOfD = 0 # as result XOR 0 = result return result # Driver code a = 11 b = 14 print (maximizeExpression(a, b)) # This code is contributed by divyamohan123 |
C#
// C# implementation of the above approach using System; class GFG { static int MAX = 32; // Function to return the value of // the maximized expression static int maximizeExpression( int a, int b) { int result = a; // int can have 32 bits for ( int bit = MAX - 1; bit >= 0; bit--) { // Consider the ith bit of D to be 1 int bitOfD = 1 << bit; // Calculate the value of (B AND bitOfD) int x = b & bitOfD; // Check if bitOfD satisfies (B AND D = D) if (x == bitOfD) { // Check if bitOfD can maximize (A XOR D) int y = result & bitOfD; if (y == 0) { result = result ^ bitOfD; } } // Note that we do not need to consider // ith bit of D to be 0 because if // above condition are not satisfied then // value of result will not change which is // similar to considering bitOfD = 0 as // result XOR 0 = result } return result; } // Driver code public static void Main (String []args) { int a = 11, b = 14; Console.WriteLine(maximizeExpression(a, b)); } } // This code is contributed by Arnab Kundu |
Javascript
<script> // Javascript implementation of the approach let MAX = 32; // Function to return the value of // the maximized expression function maximizeExpression(a, b) { let result = a; // int can have 32 bits for (let bit = MAX - 1; bit >= 0; bit--) { // Consider the ith bit of D to be 1 let bitOfD = 1 << bit; // Calculate the value of (B AND bitOfD) let x = b & bitOfD; // Check if bitOfD satisfies (B AND D = D) if (x == bitOfD) { // Check if bitOfD can maximize (A XOR D) let y = result & bitOfD; if (y == 0) { result = result ^ bitOfD; } } // Note that we do not need // to consider ith bit of D // to be 0 because if above // condition are not satisfied // then value of result will not change // which is similar to considering bitOfD = 0 // as result XOR 0 = result } return result; } // Driver code let a = 11, b = 14; document.write(maximizeExpression(a, b)); </script> |
Output:
15
Time Complexity: O(MAX)
Auxiliary Space: O(1)
Please Login to comment...