# Maximize the count of adjacent element pairs with even sum by rearranging the Array

Given an array, **arr[]** of **N** integers, the task is to find the maximum possible count of adjacent pairs with an even sum, rearranging the array **arr[].**

**Examples:**

Input:arr[] = {5, 5, 1}Output:2Explanation:

The given array is already arranged to give the maximum count of adjacent pairs with an even sum.

- {arr[0](= 5), arr[1](= 5}, the sum of the elements is 10, which is even.
- {arr[1](= 5), arr[2](= 1}, the sum of the elements is 6, which is even.
Therefore, there are totals of 2 adjacent pairs with an even sum. And it is also the maximum possible count.

Input:arr[] = {9, 13, 15, 3, 16, 9, 13, 18}Output:6Explanation:

One way to obtain the maximum count is to rearrange the array as {9, 9, 3, 13, 13, 15, 16, 18}.

- {arr[0](= 9), arr[1](= 9}, the sum of the elements is 18, which is even.
- {arr[1](= 9), arr[2](= 3}, the sum of the elements is 12, which is even.
- {arr[2](= 3), arr[3](= 13}, the sum of the elements is 16, which is even.
- {arr[3](= 13), arr[4](= 13}, the sum of the elements is 26, which is even.
- {arr[4](= 13), arr[5](= 15}, the sum of the elements is 28, which is even.
- {arr[5](= 15), arr[6](= 16}, the sum of the elements is 31, which is not even.
- {arr[6](= 16), arr[7](= 18}, the sum of the elements is 34, which is even.
Therefore, there are a total of 6 adjacent pairs with an even sum. And it is also the maximum possible count.

**Naive Approach: **The simplest approach is to try every possible arrangement of the elements and then count the number of the adjacent pairs with an even sum.

**Time Complexity:** O(N*N!)**Auxiliary Space:** O(1)

**Efficient Approach: **The above approach can be optimized based on the following observations:

- It is known that:
**Odd + Odd = Even****Even + Even = Even****Even + Odd = Odd****Odd + Even = Odd**

- The total count of adjacent pairs is
**N-1.** - Therefore, the maximum count can be obtained by putting all even numbers together and then all odd numbers or vice versa.
- Rearranging in the above-mentioned way, there will be only one pair of adjacent elements with an odd sum which will be at the junction of even numbers and odd numbers.

Follow the steps below to solve the problem:

- Find the count of odd numbers and even numbers in an array and then store them in variables say
**odd**and**even**. - If
**odd**and**even**both are greater than**0,**then print the total count**N-2**as the answer**.** - Otherwise, print
**N-1**as the answer.

Below is the implementation of the above approach:

## C++

`// C++ program for the above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `// Function to find maximum count` `// pair of adjacent elements with` `// even sum` `int` `maximumCount(` `int` `arr[], ` `int` `N)` `{` ` ` `// Stores count of odd numbers` ` ` `int` `odd = 0;` ` ` `// Stores count of even numbers` ` ` `int` `even = 0;` ` ` `// Traverse the array arr[]` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `// If arr[i]%2 is 1` ` ` `if` `(arr[i] % 2)` ` ` `odd++;` ` ` `// Else` ` ` `else` ` ` `even++;` ` ` `}` ` ` `// If odd and even both` ` ` `// are greater than 0` ` ` `if` `(odd and even)` ` ` `return` `N - 2;` ` ` `// Otherwise` ` ` `else` ` ` `return` `N - 1;` `}` `// Driver Code` `int` `main()` `{` ` ` `int` `arr[] = { 9, 13, 15, 3, 16, 9, 13, 18 };` ` ` `int` `N = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` `cout << maximumCount(arr, N);` ` ` `return` `0;` `}` |

## Java

`/*package whatever //do not write package name here */` `import` `java.io.*;` `class` `GFG {` ` ` `// Function to find maximum count` ` ` `// pair of adjacent elements with` ` ` `// even sum` ` ` `static` `int` `maximumCount(` `int` `arr[], ` `int` `N)` ` ` `{` ` ` `// Stores count of odd numbers` ` ` `int` `odd = ` `0` `;` ` ` `// Stores count of even numbers` ` ` `int` `even = ` `0` `;` ` ` `// Traverse the array arr[]` ` ` `for` `(` `int` `i = ` `0` `; i < N; i++) {` ` ` `// If arr[i]%2 is 1` ` ` `if` `(arr[i] % ` `2` `== ` `1` `)` ` ` `odd++;` ` ` `// Else` ` ` `else` ` ` `even++;` ` ` `}` ` ` `// If odd and even both` ` ` `// are greater than 0` ` ` `if` `(odd > ` `0` `&& even > ` `0` `)` ` ` `return` `N - ` `2` `;` ` ` `// Otherwise` ` ` `else` ` ` `return` `N - ` `1` `;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `arr[] = { ` `9` `, ` `13` `, ` `15` `, ` `3` `, ` `16` `, ` `9` `, ` `13` `, ` `18` `};` ` ` `int` `N = arr.length;` ` ` `System.out.println(maximumCount(arr, N));` ` ` `}` `}` ` ` `// This code is contributed by Potta Lokesh` |

## Python3

`# Python 3 program for the above approach` `# Function to find maximum count` `# pair of adjacent elements with` `# even sum` `def` `maximumCount(arr, N):` ` ` ` ` `# Stores count of odd numbers` ` ` `odd ` `=` `0` ` ` `# Stores count of even numbers` ` ` `even ` `=` `0` ` ` `# Traverse the array arr[]` ` ` `for` `i ` `in` `range` `(N):` ` ` ` ` `# If arr[i]%2 is 1` ` ` `if` `(arr[i] ` `%` `2` `):` ` ` `odd ` `+` `=` `1` ` ` `# Else` ` ` `else` `:` ` ` `even ` `+` `=` `1` ` ` `# If odd and even both` ` ` `# are greater than 0` ` ` `if` `(odd ` `and` `even):` ` ` `return` `N ` `-` `2` ` ` `# Otherwise` ` ` `else` `:` ` ` `return` `N ` `-` `1` `# Driver Code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `arr ` `=` `[` `9` `, ` `13` `, ` `15` `, ` `3` `, ` `16` `, ` `9` `, ` `13` `, ` `18` `]` ` ` `N ` `=` `len` `(arr)` ` ` `print` `(maximumCount(arr, N))` ` ` ` ` `# This code is contributed by bgangwar59.` |

## C#

`// C# program for the above approach` `using` `System;` `using` `System.Collections.Generic;` `class` `GFG{` `// Function to find maximum count` `// pair of adjacent elements with` `// even sum` `static` `int` `maximumCount(` `int` `[]arr, ` `int` `N)` `{` ` ` `// Stores count of odd numbers` ` ` `int` `odd = 0;` ` ` `// Stores count of even numbers` ` ` `int` `even = 0;` ` ` `// Traverse the array arr[]` ` ` `for` `(` `int` `i = 0; i < N; i++) {` ` ` `// If arr[i]%2 is 1` ` ` `if` `(arr[i] % 2 !=0)` ` ` `odd++;` ` ` `// Else` ` ` `else` ` ` `even++;` ` ` `}` ` ` `// If odd and even both` ` ` `// are greater than 0` ` ` `if` `(odd!=0 && even!=0)` ` ` `return` `N - 2;` ` ` `// Otherwise` ` ` `else` ` ` `return` `N - 1;` `}` `// Driver Code` `public` `static` `void` `Main()` `{` ` ` `int` `[]arr = { 9, 13, 15, 3, 16, 9, 13, 18 };` ` ` `int` `N = arr.Length;` ` ` `Console.Write(maximumCount(arr, N));` `}` `}` `// This code is contributed by ipg2016107.` |

## Javascript

`<script>` ` ` `// JavaScript program for the above approach` ` ` `// Function to find maximum count` ` ` `// pair of adjacent elements with` ` ` `// even sum` ` ` `function` `maximumCount(arr, N)` ` ` `{` ` ` ` ` `// Stores count of odd numbers` ` ` `let odd = 0;` ` ` `// Stores count of even numbers` ` ` `let even = 0;` ` ` `// Traverse the array arr[]` ` ` `for` `(let i = 0; i < N; i++) {` ` ` `// If arr[i]%2 is 1` ` ` `if` `(arr[i] % 2)` ` ` `odd++;` ` ` `// Else` ` ` `else` ` ` `even++;` ` ` `}` ` ` `// If odd and even both` ` ` `// are greater than 0` ` ` `if` `(odd && even)` ` ` `return` `N - 2;` ` ` `// Otherwise` ` ` `else` ` ` `return` `N - 1;` ` ` `}` ` ` `// Driver Code` ` ` `let arr = [9, 13, 15, 3, 16, 9, 13, 18];` ` ` `let N = arr.length;` ` ` `document.write(maximumCount(arr, N));` ` ` `// This code is contributed by Potta Lokesh` ` ` `</script>` |

**Output:**

6

**Time Complexity:** O(N)**Auxiliary Space:** O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer **Complete Interview Preparation Course****.**

In case you wish to attend **live classes **with experts, please refer **DSA Live Classes for Working Professionals **and **Competitive Programming Live for Students**.