Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximize sum of max and min of each of K Arrays obtained by dividing given Array into given sizes

  • Last Updated : 12 Jan, 2022

Given two arrays, arr[] of N size and div[] of size K. Divide arr[] into K different arrays, each of div[i] size. The task is to find the total sum after maximizing the sum of maximum and minimum of each divided array.

Examples:

Input: arr[] = {3, 1, 7, 4}, div[] = {1, 3}, N = 4, K = 2
Output: 19
Explanation: Divide the array in the following way:

  • {7}, sum of maximum and minimum = (7 + 7) = 14
  • {1, 3, 4}, sum of maximum and minimum = (4 + 1) = 5

Total sum = 14 + 5 = 19.

Input: arr[] = {10, 12, 10, 12, 10, 12}, div[] = {3, 3}, N = 6, K = 2
Output: 44

 

Approach: Follow the below steps to solve the problem:

  1. Take a variable say count1 to count a number of 1s in div[].
  2. Sort both arrays, arr[] in descending order and div[] in ascending order.
  3. Take a variable say, ans to store the answer and another variable say t which represents from which index iteration is to be started in div[].
  4. Iterate the array till K, in every iteration add the elements to ans, and add that element again to ans while count1 is greater than 0 because arrays of size 1 while having the same element as maximum and minimum.
  5. Again iterate a loop from the Kth index to the end of the array. Add an element to ans and update the index.
  6. Return the ans.

Below is the implementation of the above approach:

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the total sum after
// maximizing the sum of maximum and
// minimum of each divided array
int maximizeSum(int arr[], int divi[], int N, int K)
{
    // Variable to count 1s in divi[]
    int count1 = 0;
    for (int i = 0; i < K; i++) {
        if (divi[i] == 1) {
            count1++;
        }
    }
 
    // Sort arr[] in descending order
    sort(arr, arr + N, greater<int>());
 
    // Sort divi[] in ascending order
    sort(divi, divi + K);
 
    // Temporary variable to store
    // the count of 1s in the divi[]
 
    int t = count1;
    // Variable to store answer
    int ans = 0;
 
    // Iterate over the array till K
    for (int i = 0; i < K; i++) {
        // Add the current element to ans
        ans += arr[i];
 
        // If count1 is greater than 0,
        // decrement it by 1 and update the
        // ans by again adding the same element
        if (count1 > 0) {
            count1--;
            ans += arr[i];
        }
    }
 
    // Traverse the array from Kth index
    // to the end
    for (int i = K; i < N; i++) {
        // Update the index
        i += divi[t] - 2;
 
        // Add the value at that index to ans
        ans += arr[i];
        t++;
    }
    // Return ans
    return ans;
}
 
// Driver Code
int main()
{
    int arr[] = { 3, 1, 7, 4 };
    int divi[] = { 1, 3 };
 
    int N = sizeof(arr) / sizeof(arr[0]);
    int K = sizeof(divi) / sizeof(divi[0]);
 
    cout << maximizeSum(arr, divi, N, K);
 
    return 0;
}

Java




// Java code for the above approach
import java.util.Arrays;
import java.util.Collections;
 
class GFG
{
   
    // Function to find the total sum after
    // maximizing the sum of maximum and
    // minimum of each divided array
    static int maximizeSum(int arr[], int divi[], int N,
                           int K)
    {
       
        // Variable to count 1s in divi[]
        int count1 = 0;
        for (int i = 0; i < K; i++) {
            if (divi[i] == 1) {
                count1++;
            }
        }
 
        // Sort arr[] in descending order
        Arrays.sort(arr);
        reverse(arr);
 
        // Sort divi[] in ascending order
        Arrays.sort(divi);
 
        // Temporary variable to store
        // the count of 1s in the divi[]
 
        int t = count1;
        // Variable to store answer
        int ans = 0;
 
        // Iterate over the array till K
        for (int i = 0; i < K; i++) {
            // Add the current element to ans
            ans += arr[i];
 
            // If count1 is greater than 0,
            // decrement it by 1 and update the
            // ans by again adding the same element
            if (count1 > 0) {
                count1--;
                ans += arr[i];
            }
        }
 
        // Traverse the array from Kth index
        // to the end
        for (int i = K; i < N; i++) {
            // Update the index
            i += divi[t] - 2;
 
            // Add the value at that index to ans
            ans += arr[i];
            t++;
        }
        // Return ans
        return ans;
    }
    public static void reverse(int[] array)
    {
 
        // Length of the array
        int n = array.length;
 
        // Swaping the first half elements with last half
        // elements
        for (int i = 0; i < n / 2; i++) {
 
            // Storing the first half elements temporarily
            int temp = array[i];
 
            // Assigning the first half to the last half
            array[i] = array[n - i - 1];
 
            // Assigning the last half to the first half
            array[n - i - 1] = temp;
        }
    }
   
    // Driver Code
    public static void main(String[] args)
    {
        int arr[] = { 3, 1, 7, 4 };
        int divi[] = { 1, 3 };
 
        int N = arr.length;
        int K = divi.length;
 
        System.out.println(maximizeSum(arr, divi, N, K));
    }
}
 
// This code is contributed by Potta Lokesh

Python3




# Python program for the above approach
 
# Function to find the total sum after
# maximizing the sum of maximum and
# minimum of each divided array
def maximizeSum(arr, divi, N, K):
   
    # Variable to count 1s in divi[]
    count1 = 0
    for i in range(K):
        if (divi[i] == 1):
            count1 += 1
 
    # Sort arr[] in descending order
    arr.sort()
    arr.reverse()
 
    # Sort divi[] in ascending order
    divi.sort()
 
    # Temporary variable to store
    # the count of 1s in the divi[]
 
    t = count1
    # Variable to store answer
    ans = 0
 
    # Iterate over the array till K
    for i in range(K):
        # Add the current element to ans
        ans += arr[i]
 
        # If count1 is greater than 0,
        # decrement it by 1 and update the
        # ans by again adding the same element
        if (count1 > 0):
            count1 -= 1
            ans += arr[i]
 
    # Traverse the array from Kth index
    # to the end
    i = K
    while(i < N):
        # Update the index
        i += divi[t] - 2
 
        # Add the value at that index to ans
        ans += arr[i]
        t += 1
        i += 1
 
 
    # Return ans
    return ans
 
# Driver Code
arr = [3, 1, 7, 4]
divi = [1, 3]
 
N = len(arr)
K = len(divi)
 
print(maximizeSum(arr, divi, N, K))
 
# This code is contributed by gfgking

C#




// C# code for the above approach
 
using System;
 
public class GFG
{
   
    // Function to find the total sum after
    // maximizing the sum of maximum and
    // minimum of each divided array
    static int maximizeSum(int []arr, int []divi, int N,
                           int K)
    {
       
        // Variable to count 1s in divi[]
        int count1 = 0;
        for (int i = 0; i < K; i++) {
            if (divi[i] == 1) {
                count1++;
            }
        }
 
        // Sort arr[] in descending order
        Array.Sort(arr);
        reverse(arr);
 
        // Sort divi[] in ascending order
        Array.Sort(divi);
 
        // Temporary variable to store
        // the count of 1s in the divi[]
 
        int t = count1;
        // Variable to store answer
        int ans = 0;
 
        // Iterate over the array till K
        for (int i = 0; i < K; i++) {
            // Add the current element to ans
            ans += arr[i];
 
            // If count1 is greater than 0,
            // decrement it by 1 and update the
            // ans by again adding the same element
            if (count1 > 0) {
                count1--;
                ans += arr[i];
            }
        }
 
        // Traverse the array from Kth index
        // to the end
        for (int i = K; i < N; i++) {
            // Update the index
            i += divi[t] - 2;
 
            // Add the value at that index to ans
            ans += arr[i];
            t++;
        }
        // Return ans
        return ans;
    }
    public static void reverse(int[] array)
    {
 
        // Length of the array
        int n = array.Length;
 
        // Swaping the first half elements with last half
        // elements
        for (int i = 0; i < n / 2; i++) {
 
            // Storing the first half elements temporarily
            int temp = array[i];
 
            // Assigning the first half to the last half
            array[i] = array[n - i - 1];
 
            // Assigning the last half to the first half
            array[n - i - 1] = temp;
        }
    }
   
    // Driver Code
    public static void Main(string[] args)
    {
        int []arr = { 3, 1, 7, 4 };
        int []divi = { 1, 3 };
 
        int N = arr.Length;
        int K = divi.Length;
 
        Console.WriteLine(maximizeSum(arr, divi, N, K));
    }
}
 
// This code is contributed by AnkThon

Javascript




<script>
    // JavaScript program for the above approach
 
    // Function to find the total sum after
    // maximizing the sum of maximum and
    // minimum of each divided array
    const maximizeSum = (arr, divi, N, K) => {
        // Variable to count 1s in divi[]
        let count1 = 0;
        for (let i = 0; i < K; i++) {
            if (divi[i] == 1) {
                count1++;
            }
        }
 
        // Sort arr[] in descending order
        arr.sort();
        arr.reverse();
 
        // Sort divi[] in ascending order
        divi.sort();
 
        // Temporary variable to store
        // the count of 1s in the divi[]
 
        let t = count1;
        // Variable to store answer
        let ans = 0;
 
        // Iterate over the array till K
        for (let i = 0; i < K; i++) {
            // Add the current element to ans
            ans += arr[i];
 
            // If count1 is greater than 0,
            // decrement it by 1 and update the
            // ans by again adding the same element
            if (count1 > 0) {
                count1--;
                ans += arr[i];
            }
        }
 
        // Traverse the array from Kth index
        // to the end
        for (let i = K; i < N; i++) {
            // Update the index
            i += divi[t] - 2;
 
            // Add the value at that index to ans
            ans += arr[i];
            t++;
        }
        // Return ans
        return ans;
    }
 
    // Driver Code
    let arr = [3, 1, 7, 4];
    let divi = [1, 3];
 
    let N = arr.length
    let K = divi.length
 
    document.write(maximizeSum(arr, divi, N, K));
 
    // This code is contributed by rakeshsahni
 
</script>

 
 

Output
19

 

Time Complexity: O(N)
Auxiliary Space: O(1)

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!