Skip to content
Related Articles

Related Articles

Maximize sum by traversing diagonally from each cell of a given Matrix
  • Last Updated : 03 Feb, 2021

Given a 2D square matrix arr[][] of dimensions N x N, the task is to find the maximum path sum by moving diagonally from any cell and each cell must be visited only once i.e., from the cell (i, j), a player can move to the cell (i + 1, j + 1).

 

Examples:

Input: arr[][] = {{1, 2, 3}, {3, 5, 10}, {1 3 5}} 
Output: 12
Explanation:
Sum of cells (1, 1), (2, 2) and (3, 3) is 11.  
The sum of cells (1, 2), (2, 3) and (1, 3) is 3. 
The sum of cells (2, 1) and (3, 2) is 6.
The sum of cell (3, 1) is 1.
The maximum possible sum is 12.

Input: arr[][] = {{1, 1, 1}, {1 1 1}, {1 1 1}} 
Output: 3



Approach: To solve this problem, the idea is to traverse the matrix diagonally for first row and column elements and sum up their diagonal elements within the range of the matrix. 
Follow the steps below to solve the problem:

  1. Initialize a variable, say max with 0.
  2. Choose each cell (i, j) from the first row and from the first column.
  3. Now, from each cell, find the diagonal sum starting from that cell by incrementing i and j by 1, say sum.
  4. Then, update max as max(max, sum).
  5. After traversing, print max as the required answer.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Funtion to find the maximum sum
int MaximumSum(vector<vector<int> >& arr, int n)
{
 
    int ans = 0;
 
    // Loop to traverse through the
    // upper triangular matrix and
    // update the maximum sum to ans
    for (int i = 0; i < n; i++) {
        int x = 0, y = i, sum = 0;
        for (int j = i; j < n; j++) {
            sum += arr[x++][y++];
        }
        if (sum > ans)
            ans = sum;
    }
 
    // Traverse through the
    // lower triangular matrix
    for (int i = 1; i < n; i++) {
 
        int x = i, y = 0, sum = 0;
 
        for (int j = i; j < n; j++) {
 
            sum += arr[x++][y++];
        }
        if (sum > ans)
            ans = sum;
    }
 
    return ans;
}
 
// Driver Code
int main()
{
 
    // Given matrix
    vector<vector<int> > arr;
    arr = { { 1, 2, 3 },
            { 3, 5, 10 },
            { 1, 3, 5 } };
 
    // Given dimension
    int n = arr.size();
 
    cout << MaximumSum(arr, n);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
class GFG{
 
// Funtion to find the maximum sum
static int MaximumSum(int [][]arr, int n)
{
 
    int ans = 0;
 
    // Loop to traverse through the
    // upper triangular matrix and
    // update the maximum sum to ans
    for (int i = 0; i < n; i++)
    {
        int x = 0, y = i, sum = 0;
        for (int j = i; j < n; j++)
        {
            sum += arr[x++][y++];
        }
        if (sum > ans)
            ans = sum;
    }
 
    // Traverse through the
    // lower triangular matrix
    for (int i = 1; i < n; i++)
    {
        int x = i, y = 0, sum = 0;
        for (int j = i; j < n; j++)
        {
            sum += arr[x++][y++];
        }
        if (sum > ans)
            ans = sum;
    }
    return ans;
}
 
// Driver Code
public static void main(String[] args)
{
 
    // Given matrix
    int [][]arr = { { 1, 2, 3 },
            { 3, 5, 10 },
            { 1, 3, 5 } };
 
    // Given dimension
    int n = arr.length;
    System.out.print(MaximumSum(arr, n));
}
}
 
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Funtion to find the maximum sum
def MaximumSum(arr, n):
    ans = 0;
 
    # Loop to traverse through the
    # upper triangular matrix and
    # update the maximum sum to ans
    for i in range(n):
        x, y, sum = 0, i, 0
        for j in range(i, n):
            sum, x, y =sum + arr[x][y], x + 1, y + 1
        if (sum > ans):
            ans = sum
 
    # Traverse through the
    # lower triangular matrix
    for i in range(1, n):
 
        x, y, sum = i, 0, 0
 
        for j in range(i, n):
 
            sum, x, y =sum + arr[x][y], x + 1, y + 1
        if (sum > ans):
            ans = sum
    return ans
 
# Driver Code
if __name__ == '__main__':
 
    # Given matrix
    arr = [ [ 1, 2, 3],
            [ 3, 5, 10],
            [ 1, 3, 5 ]]
 
    # Given dimension
    n = len(arr)
    print (MaximumSum(arr, n))
 
    # This code is contributed by mohit kumar 29

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
class GFG{
 
  // Funtion to find the maximum sum
  static int MaximumSum(int [,]arr, int n)
  {
    int ans = 0;
 
    // Loop to traverse through the
    // upper triangular matrix and
    // update the maximum sum to ans
    for (int i = 0; i < n; i++)
    {
      int x = 0, y = i, sum = 0;
      for (int j = i; j < n; j++)
      {
        sum += arr[x++, y++];
      }
      if (sum > ans)
        ans = sum;
    }
 
    // Traverse through the
    // lower triangular matrix
    for (int i = 1; i < n; i++)
    {
      int x = i, y = 0, sum = 0;
      for (int j = i; j < n; j++)
      {
        sum += arr[x++, y++];
      }
      if (sum > ans)
        ans = sum;
    }
    return ans;
  }
 
  // Driver Code
  public static void Main(String[] args)
  {
 
    // Given matrix
    int [,]arr = { { 1, 2, 3 },
                  { 3, 5, 10 },
                  { 1, 3, 5 } };
 
    // Given dimension
    int n = arr.GetLength(0);
    Console.Write(MaximumSum(arr, n));
  }
}
 
// This code is contributed by shikhasingrajput

chevron_right


  

Output: 

12

 

Time Complexity: O(N2)
Auxiliary Space: O(N2)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :