Related Articles

# Maximize remainder of sum of a pair of array elements with different parity modulo K

• Last Updated : 25 Mar, 2021

Given an array arr[] of size N, consisting of N / 2 even and odd integers each, and an integer K, the task is to find the maximum remainder of sum of a pair of array elements of different parity modulo K.

Examples:

Input: arr[] = {3, 2, 4, 11, 6, 7}, K = 7
Output: 6
Explanation:
Sum of a pair of array elements = 2 + 11
Sum % K = 13 % 7 = 6.
Therefore, the maximum remainder possible is 6.

Input: arr[] = {8, 11, 17, 16}, K = 13
Output: 12

Approach: Follow the steps below to solve the problem:

• Initialize a HashSet, say even, to store all even array elements.
• Initialize a TreeSet, say odd, to store all odd array elements.
• Initialize a variable, say max_rem, to store the maximum remainder possible.
• Traverse the HashSet and for each element, find its complement and search for it in the set odd, which is less than equal to its complement.
• Update max_rem with the sum of elements, and it’s complement.
• Print the maximum remainder i.e. value of max_rem.

Below is the implementation of the above approach:

## C++

 `// C++ program for the above approach``#include ``using` `namespace` `std;` `// Function to find the maximum``// remainder of sum of a pair``// of array elements modulo K``void` `maxRemainder(``int` `A[], ``int` `N, ``int` `K)``{``    ` `    ``// Stores all even numbers``    ``unordered_set<``int``> even;` `    ``// Stores all odd numbers``    ``set<``int``> odd;` `    ``// Segregate remainders of even``    ``// and odd numbers in respective sets``    ``for``(``int` `i = 0; i < N; i++)``    ``{``        ``int` `num = A[i];``        ` `        ``if` `(num % 2 == 0)``            ``even.insert(num % K);``        ``else``            ``odd.insert(num % K);``    ``}` `    ``// Stores the maximum``    ``// remainder obtained``    ``int` `max_rem = 0;` `    ``// Find the complement of remainder``    ``// of each even number in odd set``    ``for``(``int` `x : even)``    ``{``        ` `        ``// Find the complement``        ``// of remiander x``        ``int` `y = K - 1 - x;` `        ``auto` `it = odd.upper_bound(y);``        ``if` `(it != odd.begin())``        ``{``            ``it--;``            ``max_rem = max(max_rem, x + *it);``        ``}``    ``}` `    ``// Print the answer``    ``cout << max_rem;``}` `// Driver code``int` `main()``{``    ` `    ``// Given array``    ``int` `arr[] = { 3, 2, 4, 11, 6, 7 };` `    ``// Size of the array``    ``int` `N = ``sizeof``(arr) / ``sizeof``(arr);` `    ``// Given value of K``    ``int` `K = 7;` `    ``maxRemainder(arr, N, K);` `    ``return` `0;``}` `// This code is contributed by Kingash`

## Java

 `// Java program for the above approach` `import` `java.util.*;` `class` `GFG {` `    ``// Function to find the maximum``    ``// remainder of sum of a pair``    ``// of array elements modulo K``    ``static` `void` `maxRemainder(``int` `A[],``                             ``int` `N, ``int` `K)``    ``{``        ``// Stores all even numbers``        ``HashSet even``          ``= ``new` `HashSet<>();` `        ``// Stores all odd numbers``        ``TreeSet odd``          ``= ``new` `TreeSet<>();` `        ``// Segregate remainders of even``        ``// and odd numbers in respective sets``        ``for` `(``int` `num : A) {``            ``if` `(num % ``2` `== ``0``)``                ``even.add(num % K);``            ``else``                ``odd.add(num % K);``        ``}` `        ``// Stores the maximum``        ``// remainder obtained``        ``int` `max_rem = ``0``;` `        ``// Find the complement of remainder``        ``// of each even number in odd set``        ``for` `(``int` `x : even) {` `            ``// Find the complement``            ``// of remiander x``            ``int` `y = K - ``1` `- x;``            ``if` `(odd.floor(y) != ``null``)``                ``max_rem``                    ``= Math.max(``              ``max_rem,``              ``x + odd.floor(y));``        ``}` `        ``// Print the answer``        ``System.out.print(max_rem);``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``// Given array``        ``int` `arr[] = { ``3``, ``2``, ``4``, ``11``, ``6``, ``7` `};` `        ``// Size of the array``        ``int` `N = arr.length;` `        ``// Given value of K``        ``int` `K = ``7``;` `        ``maxRemainder(arr, N, K);``    ``}``}`

## Python3

 `# Python3 program for the above approach``from` `bisect ``import` `bisect_left` `# Function to find the maximum``# remainder of sum of a pair``# of array elements modulo K``def` `maxRemainder(A, N, K):``    ` `    ``# Stores all even numbers``    ``even ``=` `{}` `    ``# Stores all odd numbers``    ``odd ``=` `{}` `    ``# Segregate remainders of even``    ``# and odd numbers in respective sets``    ``for` `i ``in` `range``(N):``        ``num ``=` `A[i]` `        ``if` `(num ``%` `2` `=``=` `0``):``            ``even[num ``%` `K] ``=` `1``        ``else``:``            ``odd[num ``%` `K] ``=` `1` `    ``# Stores the maximum``    ``# remainder obtained``    ``max_rem ``=` `0` `    ``# Find the complement of remainder``    ``# of each even number in odd set``    ``for` `x ``in` `even:``        ` `        ``# Find the complement``        ``# of remiander x``        ``y ``=` `K ``-` `1` `-` `x``        ``od ``=` `list``(odd.keys())``        ``it ``=` `bisect_left(od, y)``        ` `        ``if` `(it !``=` `0``):``            ``max_rem ``=` `max``(max_rem, x ``+` `od[it])``            ` `    ``# Print the answer``    ``print` `(max_rem)` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ` `    ``# Given array``    ``arr ``=` `[``3``, ``2``, ``4``, ``11``, ``6``, ``7``]` `    ``# Size of the array``    ``N ``=` `len``(arr)` `    ``# Given value of K``    ``K ``=` `7` `    ``maxRemainder(arr, N, K)``    ` `# This code is contributed by mohit kumar 29`
Output:
`6`

Time Complexity: O(N * logN)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up