Related Articles

Related Articles

Maximize product of same-indexed elements of same size subsequences
  • Last Updated : 09 Oct, 2020

Given two integer arrays a[] and b[], the task is to find the maximum possible product of the same indexed elements of two equal length subsequences from the two given arrays.

Examples: 

Input: a[] = {-3, 1, -12, 7}, b[] = {3, 2, -6, 7} 
Output: 124 
Explanation: The subsequence [1, -12, 7] from a[] and subsequence [3, -6, 7] from b[] gives the maximum scaler product, (1*3 + (-12)*(-6) + 7*7) = 124.

Input: a[] = {-2, 6, -2, -5}, b[] = {-3, 4, -2, 8} 
Output: 54 
Explanation: The subsequence [-2, 6] from a[] and subsequence [-3, 8] from b[] gives the maximum scaler product, ((-2)*(-3) + 6*8) = 54. 

Approach: The problem is similar to the Longest Common Subsequence problem of Dynamic Programming. A Recursive and Memoization based Top-Down method is explained below: 



  • Let us define a function F(X, Y), which returns the maximum scalar product between the arrays a[0-X] and b[0-Y].
  • Following is the recursive definition: 

F(X, Y) = max(a[X] * b[Y] + F(X – 1, Y – 1); Use the last elements from both arrays and check further 
a[X] * b[Y]; Only use the last element as the maximum product
F(X – 1, Y); Ignore the last element from the first array 
F(X, Y – 1)); Ignore the last element from the second element 

  • Use a 2-D array for memoization and to avoid recomputation of same sub-problems.

Below is the implementation of the above approach: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to maximize
// product of same-indexed elements
// of same size subsequences
 
#include <bits/stdc++.h>
using namespace std;
 
#define INF 10000000
 
// Utility function to find the maximum
int maximum(int A, int B, int C, int D)
{
    return max(max(A, B), max(C, D));
}
 
// Utility function to find
// the maximum scalar product
// from the equal length sub-sequences
// taken from the two given array
int maxProductUtil(
    int X, int Y,
    int* A, int* B,
    vector<vector<int> >& dp)
{
    // Return a very small number
    // if index is invalid
    if (X < 0 or Y < 0)
        return -INF;
 
    // If the sub-problem is already
    // evaluated, then return it
    if (dp[X][Y] != -1)
        return dp[X][Y];
 
    // Take the maximum of all
    // the recursive cases
    dp[X][Y]
        = maximum(
            A[X] * B[Y]
                + maxProductUtil(
                      X - 1, Y - 1, A, B, dp),
            A[X] * B[Y],
            maxProductUtil(
                X - 1, Y, A, B, dp),
            maxProductUtil(
                X, Y - 1, A, B, dp));
 
    return dp[X][Y];
}
 
// Function to find maximum scalar
// product from same size sub-sequences
// taken from the two given array
int maxProduct(int A[], int N,
               int B[], int M)
{
    // Initialize a 2-D array
    // for memoization
    vector<vector<int> >
    dp(N, vector<int>(M, -1));
 
    return maxProductUtil(
        N - 1, M - 1,
        A, B, dp);
}
 
// Driver Code
int main()
{
    int a[] = { -2, 6, -2, -5 };
    int b[] = { -3, 4, -2, 8 };
 
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
 
    cout << maxProduct(a, n, b, m);
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to maximize
// product of same-indexed elements
// of same size subsequences
class GFG{
 
static final int INF = 10000000;
 
// Utility function to find the maximum
static int maximum(int A, int B,
                   int C, int D)
{
    return Math.max(Math.max(A, B),
                    Math.max(C, D));
}
 
// Utility function to find the
// maximum scalar product from
// the equal length sub-sequences
// taken from the two given array
static int maxProductUtil(int X, int Y,
                          int []A, int[] B,
                          int [][]dp)
{
     
    // Return a very small number
    // if index is invalid
    if (X < 0 || Y < 0)
        return -INF;
 
    // If the sub-problem is already
    // evaluated, then return it
    if (dp[X][Y] != -1)
        return dp[X][Y];
 
    // Take the maximum of all
    // the recursive cases
    dp[X][Y] = maximum(A[X] * B[Y] +
                       maxProductUtil(X - 1, Y - 1,
                                      A, B, dp),
                       A[X] * B[Y],
                       maxProductUtil(X - 1, Y,
                                      A, B, dp),
                       maxProductUtil(X, Y - 1,
                                      A, B, dp));
                                       
    return dp[X][Y];
}
 
// Function to find maximum scalar
// product from same size sub-sequences
// taken from the two given array
static int maxProduct(int A[], int N,
                      int B[], int M)
{
     
    // Initialize a 2-D array
    // for memoization
    int [][]dp = new int[N][M];
    for(int i = 0; i < N; i++)
    {
       for(int j = 0; j < M; j++)
       {
          dp[i][j] = -1;
       }
    }
     
    return maxProductUtil(N - 1, M - 1,
                          A, B, dp);
}
 
// Driver Code
public static void main(String[] args)
{
    int a[] = { -2, 6, -2, -5 };
    int b[] = { -3, 4, -2, 8 };
 
    int n = a.length;
    int m = b.length;
 
    System.out.print(maxProduct(a, n, b, m));
}
}
 
// This code is contributed by Amal Kumar Choubey

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to maximize
# product of same-indexed elements
# of same size subsequences
INF = 10000000
 
# Utility function to find the maximum
def maximum(A, B, C, D):
     
    return max(max(A, B), max(C, D))
 
# Utility function to find
# the maximum scalar product
# from the equal length sub-sequences
# taken from the two given array
def maxProductUtil(X, Y, A, B, dp):
 
    # Return a very small number
    # if index is invalid
    if (X < 0 or Y < 0):
        return -INF
 
    # If the sub-problem is already
    # evaluated, then return it
    if (dp[X][Y] != -1):
        return dp[X][Y]
 
    # Take the maximum of all
    # the recursive cases
    dp[X][Y]= maximum(A[X] * B[Y] +
                      maxProductUtil(X - 1, Y - 1,
                                     A, B, dp),
                      A[X] * B[Y],
                      maxProductUtil(X - 1, Y, A,
                                     B, dp),
                      maxProductUtil(X, Y - 1, A,
                                     B, dp))
                           
    return dp[X][Y]
 
# Function to find maximum scalar
# product from same size sub-sequences
# taken from the two given array
def maxProduct(A, N, B, M):
 
    # Initialize a 2-D array
    # for memoization
    dp = [[-1 for i in range(m)]
              for i in range(n)]
 
    return maxProductUtil(N - 1, M - 1,
                          A, B, dp)
 
# Driver Code
a = [ -2, 6, -2, -5 ]
b = [ -3, 4, -2, 8 ]
n = len(a)
m = len(b)
 
print(maxProduct(a, n, b, m))
 
# This code is contributed by avanitrachhadiya2155

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to maximize
// product of same-indexed elements
// of same size subsequences
using System;
 
class GFG{
 
static readonly int INF = 10000000;
 
// Utility function to find the maximum
static int maximum(int A, int B,
                   int C, int D)
{
    return Math.Max(Math.Max(A, B),
                    Math.Max(C, D));
}
 
// Utility function to find the
// maximum scalar product from
// the equal length sub-sequences
// taken from the two given array
static int maxProductUtil(int X, int Y,
                          int []A, int[] B,
                          int [,]dp)
{
     
    // Return a very small number
    // if index is invalid
    if (X < 0 || Y < 0)
        return -INF;
 
    // If the sub-problem is already
    // evaluated, then return it
    if (dp[X, Y] != -1)
        return dp[X, Y];
 
    // Take the maximum of all
    // the recursive cases
    dp[X, Y] = maximum(A[X] * B[Y] +
                       maxProductUtil(X - 1, Y - 1,
                                        A, B, dp),
                       A[X] * B[Y],
                       maxProductUtil(X - 1, Y,
                                      A, B, dp),
                       maxProductUtil(X, Y - 1,
                                      A, B, dp));
                                         
    return dp[X, Y];
}
 
// Function to find maximum scalar
// product from same size sub-sequences
// taken from the two given array
static int maxProduct(int []A, int N,
                      int []B, int M)
{
     
    // Initialize a 2-D array
    // for memoization
    int [,]dp = new int[N, M];
    for(int i = 0; i < N; i++)
    {
       for(int j = 0; j < M; j++)
       {
          dp[i, j] = -1;
       }
    }
     
    return maxProductUtil(N - 1, M - 1,
                          A, B, dp);
}
 
// Driver Code
public static void Main(String[] args)
{
    int []a = { -2, 6, -2, -5 };
    int []b = { -3, 4, -2, 8 };
 
    int n = a.Length;
    int m = b.Length;
 
    Console.Write(maxProduct(a, n, b, m));
}
}
 
// This code is contributed by amal kumar choubey

chevron_right


Output: 

54

 

competitive-programming-img




My Personal Notes arrow_drop_up
Recommended Articles
Page :