Skip to content
Related Articles

Related Articles

Improve Article

Maximize product of array by replacing array elements with its sum or product with element from another array

  • Difficulty Level : Expert
  • Last Updated : 22 Jun, 2021

Given two arrays A[] and B[] consisting of N integers, the task is to update array A[] by assigning every array element A[i] to a single element B[j] and update A[i] to A[i] + B[j] or A[i] * B[j], such that the product of the array A[] is maximized.

Note: Every array element in both the arrays can be paired with a single element from the other array only once.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples:

Input: A[] = {1, 1, 6}, B[] = {1, 2, 3}
Output: 108
Explanation:



  1. Update A[0] = A[0] + B[0], A[] modifies to {2, 1, 6}
  2. Update A[1] = A[1] + B[1], A[] modifies to {2, 3, 6}
  3. Update A[0] = A[0] * B[2], A[] modifies to {6, 3, 6}

Therefore, the product of the array A[] is 6 * 3 * 6 = 108.

Input: A[] = {1, 1, 10}, B[] ={1, 1, 1}
Output: 60
Explanation:

  1. Update A[0] = A[0] + B[0], A[] modifies to {2, 1, 10}
  2. Update A[1] = A[1] + B[1], A[] modifies to {2, 2, 10}
  3. Update A[0] = A[0] * B[2], A[] modifies to {3, 2, 10}
 

Approach: The above problem can be solved by using a priority queue(min-heap). Follow the steps below to solve the problem:

  • Sort the array B[].
  • Insert all elements of array A[] into priority queue in order to get minimum elements each time.
  • Traverse the given array B[] using variable j and popped an element from the priority queue as the maximum of minE + B[j] or minE*B[j] and push this maximum into the priority queue.
  • After the above steps, the product of elements in the priority queue is the required result.

Below is the implementation of the above approach :

C++




// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the largest
// product of array A[]
int largeProduct(vector<int> A,
                 vector<int> B, int N)
{
     
    // Base Case
    if (N == 0)
        return 0;
 
    // Store all the elements of
    // the array A[]
    priority_queue<int, vector<int>,
           greater<int>> pq;
 
    for(int i = 0; i < N; i++)
        pq.push(A[i]);
 
    // Sort the Array B[]
    sort(B.begin(), B.end());
 
    // Traverse the array B[]
    for(int i = 0; i < N; i++)
    {
         
        // Pop minimum element
        int minn = pq.top();
        pq.pop();
 
        // Check which operation is
        // producing maximum element
        int maximized_element = max(minn * B[i],
                                    minn + B[i]);
 
        // Insert resultant element
        // into the priority queue
        pq.push(maximized_element);
    }
 
    // Evaluate the product
    // of the elements of A[]
    int max_product = 1;
    while (pq.size() > 0)
    {
        max_product *= pq.top();
        pq.pop();
    }
 
    // Return the maximum product
    return max_product;
}
 
// Driver Code
int main()
{
     
    // Given arrays
    vector<int> A = { 1, 1, 10 };
    vector<int> B = { 1, 1, 1 };
 
    int N = 3;
 
    // Function Call
    cout << largeProduct(A, B, N);
}
 
// This code is contributed by mohit kumar 29

Java




// Java program for the above approach
 
import java.io.*;
import java.util.*;
class GFG {
 
    // Function to find the largest
    // product of array A[]
    public static int largeProduct(
        int A[], int B[], int N)
    {
        // Base Case
        if (N == 0)
            return 0;
 
        // Store all the elements of
        // the array A[]
        PriorityQueue<Integer> pq
            = new PriorityQueue<>();
 
        for (int i = 0; i < N; i++)
            pq.add(A[i]);
 
        // Sort the Array B[]
        Arrays.sort(B);
 
        // Traverse the array B[]
        for (int i = 0; i < N; i++) {
 
            // Pop minimum element
            int minn = pq.poll();
 
            // Check which operation is
            // producing maximum element
            int maximized_element
                = Math.max(minn * B[i],
                           minn + B[i]);
 
            // Insert resultant element
            // into the priority queue
            pq.add(maximized_element);
        }
 
        // Evaluate the product
        // of the elements of A[]
        int max_product = 1;
        while (pq.size() > 0) {
 
            max_product *= pq.poll();
        }
 
        // Return the maximum product
        return max_product;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        // Given arrays
        int A[] = { 1, 1, 10 };
        int B[] = { 1, 1, 1 };
 
        int N = 3;
 
        // Function Call
        System.out.println(
            largeProduct(A, B, N));
    }
}

Python3




# Python program for the above approach
 
# Function to find the largest
# product of array A[]
def largeProduct(A, B, N):
   
    # Base Case
    if(N == 0):
        return 0
       
    # Store all the elements of
    # the array A[]
    pq = []
    for i in range(N):
        pq.append(A[i])
 
    # Sort the Array B[]
    B.sort()
    pq.sort(reverse = True)
 
    # Traverse the array B[]
    for i in range(N):
       
        # Pop minimum element
        minn = pq.pop()
         
        # Check which operation is
        # producing maximum element
        maximized_element = max(minn * B[i], minn + B[i])
         
        # Insert resultant element
        # into the priority queue
        pq.append(maximized_element)
        pq.sort(reverse = True)
         
    # Evaluate the product
    # of the elements of A[]
    max_product = 1
    while(len(pq) > 0):
        max_product *= pq.pop();
     
    # Return the maximum product   
    return max_product
 
# Driver Code
 
# Given arrays
A = [1, 1, 10]
B = [1, 1, 1]
N = 3
 
# Function Call
print(largeProduct(A, B, N))
 
# This code is contributed by avanitrachhadiya2155

C#




// C# program for the above approach
using System;
using System.Collections.Generic;
class GFG
{
   
    // Function to find the largest
    // product of array A[]
    public static int largeProduct(int[] A, int[] B, int N)
    {
       
        // Base Case
        if(N == 0)
        {
            return 0;
        }
       
        // Store all the elements of
        // the array A[]
        List<int> pq = new List<int>();
        for(int i = 0; i < N; i++)
        {
            pq.Add(A[i]);
        }
       
        // Sort the Array B[]
        Array.Sort(B);
        pq.Sort();
       
        // Traverse the array B[]
        for(int i = 0; i < N; i++)
        {
            int min = pq[0];
           
            // Pop minimum element
            pq.RemoveAt(0);
           
            // Check which operation is
            // producing maximum element
            int maximized_element = Math.Max(min* B[i], min + B[i]);
           
            // Insert resultant element
            // into the priority queue
            pq.Add(maximized_element);
            pq.Sort();
        }
       
        // Evaluate the product
        // of the elements of A[]
        int max_product = 1;
        while(pq.Count > 0)
        {
            max_product *= pq[0];
            pq.RemoveAt(0);
        }
       
        // Return the maximum product
        return max_product;
    }
   
    // Driver Code
    static public void Main ()
    {
       
        // Given arrays
        int[] A = { 1, 1, 10 };
        int[] B = { 1, 1, 1 };
        int N = 3;
       
        // Function Call
        Console.WriteLine(largeProduct(A, B, N));
    }
}
 
// This code is contributed by rag2127

Javascript




<script>
// Javascript program for the above approach
 
// Function to find the largest
// product of array A[]
function  largeProduct(A, B, N)
{
 
    // Base Case
        if (N == 0)
            return 0;
   
        // Store all the elements of
        // the array A[]
        let pq=[];
   
        for (let i = 0; i < N; i++)
            pq.push(A[i]);
        pq.sort(function(a,b){return a-b;});
   
        // Sort the Array B[]
        B.sort(function(a,b){return a-b;});
           
        // Traverse the array B[]
        for (let i = 0; i < N; i++) {
   
            // Pop minimum element
            let minn = pq.shift();
   
            // Check which operation is
            // producing maximum element
            let maximized_element
                = Math.max(minn * B[i],
                           minn + B[i]);
   
            // Insert resultant element
            // into the priority queue
            pq.push(maximized_element);
            pq.sort(function(a,b){return a-b;});
        }
   
        // Evaluate the product
        // of the elements of A[]
        let max_product = 1;
        while (pq.length > 0) {
   
            max_product *= pq.shift();
        }
   
        // Return the maximum product
        return max_product;
}
 
// Driver Code
let A=[1, 1, 10 ];
let B=[1, 1, 1];
let N = 3;
document.write(largeProduct(A, B, N));
 
// This code is contributed by patel2127
</script>
Output:
60

 

Time Complexity: O(N log N)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up
Recommended Articles
Page :