Maximize median after doing K addition operation on the Array

Given an array arr[] of N elements and an integer K, the task is to perform at most K operation on the array. In the one operation increment any element by one of the array. Find maximize median after doing K such operation. 

Example:

Input: arr[] = {1, 3, 4, 5}, K = 3
Output: 5
Explanation: Here we add two in the second element and one in the third element then we will get a maximum median. After k operation the array can become {1, 5, 5, 5}. So the maximum median we can make is ( 5 + 5 ) / 2 = 5, because here N is even.

Input: arr[] = {1, 3, 6, 4, 2}, K = 10
Output: 7

Approach: 



  1. Sort the array in increasing order.
  2. Since the median is the middle element of the array doing the operation in the left half then it will be worthless because it will not increase the median.
  3. Perform the operation in the second half and start performing the operations from the n/2th element to the end.
  4. If N is even then start doing the operation from the n/2 element to the end.
  5. Using Binary Search we will check for any number is possible as a median or not after doing K operation.
  6. If the median is possible then we will check for the next number which is greater than the current median calculated. Otherwise, the last possible value of the median is the required result.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to check operation can be
// perform or not
bool possible(int arr[], int N,
              int mid, int K)
{
 
    int add = 0;
 
    for (int i = N / 2 - (N + 1) % 2;
         i < N; ++i) {
 
        if (mid - arr[i] > 0) {
 
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
 
            if (add > K)
                return false;
        }
    }
 
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
 
// Function to find max median
// of the array
int findMaxMedian(int arr[], int N,
                  int K)
{
 
    // Lowest possible median
    int low = 1;
    int mx = 0;
 
    for (int i = 0; i < N; ++i) {
        mx = max(mx, arr[i]);
    }
 
    // Highest possible median
    long long int high = K + mx;
 
    while (low <= high) {
 
        int mid = (high + low) / 2;
 
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K)) {
            low = mid + 1;
        }
 
        else {
            high = mid - 1;
        }
    }
 
    if (N % 2 == 0) {
 
        if (low - 1 < arr[N / 2]) {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
 
    // Return the max possible ans
    return low - 1;
}
 
// Driver Code
int main()
{
    // Given array
    int arr[] = { 1, 3, 6 };
 
    // Given number of operation
    int K = 10;
 
    // Size of array
    int N = sizeof(arr) / sizeof(arr[0]);
 
    // Sort the array
    sort(arr, arr + N);
 
    // Function call
    cout << findMaxMedian(arr, N, K);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
 
class GFG{
 
// Function to check operation can be
// perform or not
static boolean possible(int arr[], int N,
                        int mid, int K)
{
    int add = 0;
 
    for(int i = N / 2 - (N + 1) % 2;
            i < N; ++i)
    {
        if (mid - arr[i] > 0)
        {
 
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
 
            if (add > K)
                return false;
        }
    }
 
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
 
// Function to find max median
// of the array
static int findMaxMedian(int arr[], int N,
                                    int K)
{
 
    // Lowest possible median
    int low = 1;
    int mx = 0;
 
    for(int i = 0; i < N; ++i)
    {
        mx = Math.max(mx, arr[i]);
    }
 
    // Highest possible median
    int high = K + mx;
 
    while (low <= high)
    {
        int mid = (high + low) / 2;
 
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K))
        {
            low = mid + 1;
        }
 
        else
        {
            high = mid - 1;
        }
    }
     
    if (N % 2 == 0)
    {
        if (low - 1 < arr[N / 2])
        {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
     
    // Return the max possible ans
    return low - 1;
}
 
// Driver code
public static void main(String[] args)
{
     
    // Given array
    int arr[] = { 1, 3, 6 };
     
    // Given number of operation
    int K = 10;
     
    // Size of array
    int N = arr.length;
     
    // Sort the array
    Arrays.sort(arr);
     
    // Function call
    System.out.println(findMaxMedian(arr, N, K));
}
}
 
// This code is contributed by offbeat

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program for the above approach
 
# Function to check operation can be
# perform or not
def possible(arr, N, mid, K):
 
    add = 0
 
    for i in range(N // 2 - (N + 1) % 2, N):
 
        if (mid - arr[i] > 0):
 
            # Number of operation to
            # perform s.t. mid is median
            add += (mid - arr[i])
 
            if (add > K):
                return False
 
    # If mid is median of the array
    if (add <= K):
        return True
    else:
        return False
 
# Function to find max median
# of the array
def findMaxMedian(arr, N,K):
 
    # Lowest possible median
    low = 1
    mx = 0
 
    for i in range(N):
        mx = max(mx, arr[i])
 
    # Highest possible median
    high = K + mx
 
    while (low <= high):
 
        mid = (high + low) // 2
 
        # Checking for mid is possible
        # for the median of array after
        # doing at most k operation
        if (possible(arr, N, mid, K)):
            low = mid + 1
        else :
            high = mid - 1
 
    if (N % 2 == 0):
 
        if (low - 1 < arr[N // 2]):
            return (arr[N // 2] + low - 1) // 2
 
    # Return the max possible ans
    return low - 1
 
# Driver Code
if __name__ == '__main__':
     
    # Given array
    arr = [1, 3, 6]
 
    # Given number of operation
    K = 10
 
    # Size of array
    N = len(arr)
 
    # Sort the array
    arr = sorted(arr)
 
    # Function call
    print(findMaxMedian(arr, N, K))
 
# This code is contributed by Mohit Kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
class GFG{
  
// Function to check operation can be
// perform or not
static bool possible(int []arr, int N,
                       int mid, int K)
{
    int add = 0;
  
    for(int i = N / 2 - (N + 1) % 2;
            i < N; ++i)
    {
        if (mid - arr[i] > 0)
        {
  
            // Number of operation to
            // perform s.t. mid is median
            add += (mid - arr[i]);
  
            if (add > K)
                return false;
        }
    }
  
    // If mid is median of the array
    if (add <= K)
        return true;
    else
        return false;
}
  
// Function to find max median
// of the array
static int findMaxMedian(int []arr, int N,
                                    int K)
{
  
    // Lowest possible median
    int low = 1;
    int mx = 0;
  
    for(int i = 0; i < N; ++i)
    {
        mx = Math.Max(mx, arr[i]);
    }
  
    // Highest possible median
    int high = K + mx;
  
    while (low <= high)
    {
        int mid = (high + low) / 2;
  
        // Checking for mid is possible
        // for the median of array after
        // doing at most k operation
        if (possible(arr, N, mid, K))
        {
            low = mid + 1;
        }
  
        else
        {
            high = mid - 1;
        }
    }
      
    if (N % 2 == 0)
    {
        if (low - 1 < arr[N / 2])
        {
            return (arr[N / 2] + low - 1) / 2;
        }
    }
      
    // Return the max possible ans
    return low - 1;
}
  
// Driver code
public static void Main(string[] args)
{
      
    // Given array
    int []arr = { 1, 3, 6 };
      
    // Given number of operation
    int K = 10;
      
    // Size of array
    int N = arr.Length;
      
    // Sort the array
    Array.Sort(arr);
      
    // Function call
    Console.Write(findMaxMedian(arr, N, K));
}
}
  
// This code is contributed by rock_cool

chevron_right


Output: 

9


 

Time Complexity: O(N*log(K + M)), where M is the maximum element of the given array.
Auxiliary Space: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.