Skip to content
Related Articles

Related Articles

Improve Article
Maximize GCD of all possible pairs from 1 to N
  • Difficulty Level : Medium
  • Last Updated : 05 Apr, 2021

Given an integer N (? 2), the task is to find the maximum GCD among all pairs possible by the integers in the range [1, N].

Example: 

Input: N = 5 
Output:
Explanation : 
GCD(1, 2) : 1 
GCD(1, 3) : 1 
GCD(1, 4) : 1 
GCD(1, 5) : 1 
GCD(2, 3) : 1 
GCD(2, 4) : 2 
GCD(2, 5) : 1 
GCD(3, 4) : 1 
GCD(3, 5) : 1 
GCD(4, 5) : 1

Input: N = 6 
Output:
Explanation: GCD of pair (3, 6) is the maximum. 
 

Naive Approach: 
The simplest approach to solve the problem is to generate all possible pairs from [1, N] and calculate GCD of each pair. Finally, print the maximum GCD obtained. 
Time Complexity: O(N2logN) 
Auxiliary Space: O(1) 

Efficient Approach: 
Follow the steps below to solve the problem:  



  • Since all the pairs are distinct, then, for any pair {a, b} with GCD g, either of a or b is greater than g.
  • Considering b to be the greater number, b ? 2g, since 2g is the smallest multiple of g greater than it.
  • Since b cannot exceed N, and 2g ? N.
  • Therefore, g ? floor(n/2).
  • Therefore, the maximum GCD that can be obtained is floor(n/2), when pair chosen is (floor(n/2), 2*floor(n/2)). 

Illustration: 
N = 6 
Maximum GCD = 6/2 = 3, occurs for the pair (3, 6) 
 

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to obtain the maximum
// gcd of all pairs from 1 to n
void find(int n)
{
    // Print the answer
    cout << n / 2 << endl;
}
 
// Driver code
int main()
{
    int n = 5;
    // Function call
    find(n);
    return 0;
}

Java




// Java Program to implement
// the approach
class GFG{
   
// Function to obtain the maximum
// gcd of all pairs from 1 to n
static void find(int n)
{
    // Print the answer
    System.out.println(n / 2);
}
  
// Driver code
public static void main(String[] args)
{
    int n = 5;
    // Function call
    find(n);
}
}
 
// This code is contributed by Ritik Bansal

Python3




# Python3 program to implement
# the approach
 
# Function to obtain the maximum
# gcd of all pairs from 1 to n
def find(n):
 
    # Print the answer
    print(n // 2)
 
# Driver Code
if __name__ == '__main__':
 
    # Given n
    n = 5
 
    # Function call
    find(n)
 
# This code is contributed by Shivam Singh

C#




// C# Program to implement
// the approach
using System;
class GFG{
    
// Function to obtain the maximum
// gcd of all pairs from 1 to n
static void find(int n)
{
    // Print the answer
    Console.Write(n / 2);
}
   
// Driver code
public static void Main(string[] args)
{
    int n = 5;
    // Function call
    find(n);
}
}
  
// This code is contributed by rock_cool

Javascript




<script>
 
// Javascript program to implement
// the approach
 
// Function to obtain the maximum
// gcd of all pairs from 1 to n
function find(n)
{
     
    // Print the answer
    document.write(parseInt(n / 2, 10) + "</br>");
}
 
// Driver code
let n = 5;
 
// Function call
find(n);
 
// This code is contributed by divyeshrabadiya07
 
</script>
Output: 
2

 

Time Complexity: O(1) 
Auxiliary Space: O(1)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes




My Personal Notes arrow_drop_up
Recommended Articles
Page :