Maximize frequency of an element by at most one increment or decrement of all array elements | Set 2
Given an array arr[] of size N, the task is to find the maximum frequency of any array element by incrementing or decrementing each array element by 1 at most once.
Examples:
Input: arr[] = { 3, 1, 4, 1, 5, 9, 2 }
Output: 4
Explanation:
Decrementing the value of arr[0] by 1 modifies arr[] to { 2, 1, 4, 1, 5, 9, 2 }
Incrementing the value of arr[1] by 1 modifies arr[] to { 2, 2, 4, 1, 5, 9, 2 }
Incrementing the value of arr[3] by 1 modifies arr[] to { 2, 2, 4, 1, 5, 9, 2 }
Therefore, the frequency of an array element(arr[0]) is 4 which is the maximum possible.Input: arr[] = { 0, 1, 2, 3, 4, 5, 6 }
Output: 3
Explanation:
Incrementing the value of arr[0] by 1 modifies arr[] to { 1, 1, 2, 3, 4, 5, 6 }
Decrementing the value of arr[2] by 1 modifies arr[] to { 1, 1, 1, 3, 4, 5, 6 }
Therefore, the frequency of an array element(arr[0]) is 3 which is the maximum possible.
Greedy Approach: The greedy approach to solve this problem has been discussed in Set 1 of this article.
Frequency Counting Approach: The idea is to create a frequency array and store the frequency of all elements of the array arr[i]. Now for each possible value of element try to merge the left and right values to this point i.e, freq[i] + freq[i-1] + freq[i+1]. Follow the steps below to solve the problem:
- Define a variable MAXN with a value of 1e5.
- Initialize an array freq[MAXN] with values 0.
- Iterate over the range [0, N) using the variable i and perform the following tasks:
- Increase the value of freq[arr[i]] by 1.
- Initialize the variable max_freq with value -MAXN.
- Iterate over the range [1, MAXN-1) using the variable i and perform the following tasks:
- Set the value of max_freq as the maximum of max_freq or freq[i-1] + freq[i] + freq[i+1].
- After performing the above steps, print the value of max_freq as the answer.
Below is the implementation of the above approach.
C++
// C++ program to implement the above approach #include <bits/stdc++.h> using namespace std; #define MAXN 100005 // Function to maximize the frequency // of an array element by incrementing or // decrementing array elements at most once void max_freq( int arr[], int N) { // Store the frequency of each element int freq[MAXN]; memset (freq, 0, sizeof (freq)); for ( int i = 0; i < N; i++) { freq[arr[i]]++; } // Iterate through each value // try to merge left and // right values to it int max_freq = -MAXN; for ( int i = 1; i < MAXN - 1; i++) { max_freq = max(max_freq, freq[i] + freq[i - 1] + freq[i + 1]); } cout << max_freq; } // Driver Code int main() { int arr[] = { 3, 1, 4, 1, 5, 9, 2 }; int N = sizeof (arr) / sizeof (arr[0]); // Function call max_freq(arr, N); return 0; } |
Java
// Java program to implement the above approach import java.util.Arrays; class GFG { public static int MAXN = 100005 ; // Function to maximize the frequency // of an array element by incrementing or // decrementing array elements at most once public static void max_freq( int arr[], int N) { // Store the frequency of each element int [] freq = new int [MAXN]; Arrays.fill(freq, 0 ); for ( int i = 0 ; i < N; i++) { freq[arr[i]]++; } // Iterate through each value // try to merge left and // right values to it int max_freq = -MAXN; for ( int i = 1 ; i < MAXN - 1 ; i++) { max_freq = Math.max(max_freq, freq[i] + freq[i - 1 ] + freq[i + 1 ]); } System.out.println(max_freq); } // Driver Code public static void main(String args[]) { int arr[] = { 3 , 1 , 4 , 1 , 5 , 9 , 2 }; int N = arr.length; // Function call max_freq(arr, N); } } // This code is contributed by Saurabh Jaiswal |
Python3
# Python3 program to implement the above approach MAXN = 100005 ; # Function to maximize the frequency # of an array element by incrementing or # decrementing array elements at most once def max_freq(arr, N) : # Store the frequency of each element freq = [ 0 ] * MAXN; for i in range (N) : freq[arr[i]] + = 1 ; # Iterate through each value # try to merge left and # right values to it max_freq = - MAXN; for i in range ( 1 , MAXN - 1 ) : max_freq = max (max_freq, freq[i] + freq[i - 1 ] + freq[i + 1 ]); print (max_freq); # Driver Code if __name__ = = "__main__" : arr = [ 3 , 1 , 4 , 1 , 5 , 9 , 2 ]; N = len (arr); # Function call max_freq(arr, N); # This code is contributed by AnkThon |
C#
// C# program to implement the above approach using System; class GFG { static int MAXN = 100005; // Function to maximize the frequency // of an array element by incrementing or // decrementing array elements at most once static void max_freq( int []arr, int N) { // Store the frequency of each element int []freq = new int [MAXN]; Array.Clear(freq, 0, freq.Length); for ( int i = 0; i < N; i++) { freq[arr[i]]++; } // Iterate through each value // try to merge left and // right values to it int max_freq = -MAXN; for ( int i = 1; i < MAXN - 1; i++) { max_freq = Math.Max(max_freq, freq[i] + freq[i - 1] + freq[i + 1]); } Console.Write(max_freq); } // Driver Code public static void Main() { int []arr = { 3, 1, 4, 1, 5, 9, 2 }; int N = arr.Length; // Function call max_freq(arr, N); } } // This code is contributed by Samim Hossain Mondal. |
Javascript
<script> // JavaScript Program to implement // the above approach var MAXN = 100005 // Function to maximize the frequency // of an array element by incrementing or // decrementing array elements at most once function max_freq(arr, N) { // Store the frequency of each element let freq = new Array(MAXN).fill(0); for (let i = 0; i < N; i++) { freq[arr[i]]++; } // Iterate through each value // try to merge left and // right values to it let max_freq = -MAXN; for (let i = 1; i < MAXN - 1; i++) { max_freq = Math.max(max_freq, freq[i] + freq[i - 1] + freq[i + 1]); } document.write(max_freq); } // Driver Code let arr = [3, 1, 4, 1, 5, 9, 2]; let N = arr.length; // Function call max_freq(arr, N); // This code is contributed by Potta Lokesh </script> |
4
Time Complexity: O(N)
Auxiliary Space: O(|Max|), where Max is the maximum element in the array
Please Login to comment...