Given a positive integer N, the task is to construct an array of length N and find the maximize the value at index K such that the sum of all the array elements is at most M and the absolute difference between any two consecutive array elements is at most 1.
Examples:
Input: N = 3, M = 7, K = 1
Output: 3
Explanation:
According to the given constraints, the array with values {2, 3, 2}maximizes the value at index 1. Therefore, the required output is 3.
Input: N = 3, M = 8, K = 1
Output: 3
Approach: The idea is to achieve the maximum value at index K and to decrease the sum of other elements to meet the criteria of the sum of the array to be at most M. Follow the steps below:
- Let the value at index K be X. So the element at K – 1 is X – 1, at K – 2 is X – 2 and so on.
- At index 0 the value is X – K. Similarly, at index K + 1 the value is X – 1 and so on upto X – (N – K – 1) at index N – 1.
- So to achieve the maximum value at index K, the array structure would be X – K, X – (K – 1), …., X – 2, X – 1, X, X – 1, X – 2, ….., X – (N – K – 1).
- So after arranging the equation, it becomes K * X – (1 + 2 + …. + K) + X + (N – K – 1) * X – (1 + 2 + …. + (N – K – 1)) ? M.
Follow the steps to solve the above equation:
- Calculate (1 + 2 + …. + K) using K * (K + 1) / 2 and (1 + 2 + ….. + (N – K – 1)) using (N – K – 1) * (N – K) / 2 and store in S1 and S2 respectively.
- This reduces the equation to X * (K + 1 + N – K – 1) ? M + S1 + S2.
- Now, the maximum value of X can be obtained by calculating (M + S1 + S2) / N.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
void maxValueAtIndexK( int N, int K, int M)
{
int S1 = 0, S2 = 0;
S1 = K * (K + 1) / 2;
S2 = (N - K - 1) * (N - K) / 2;
int X = (M + S1 + S2) / N;
cout << X;
}
int main()
{
int N = 3, K = 1, M = 7;
maxValueAtIndexK(N, K, M);
return 0;
}
|
Java
import java.io.*;
class GFG{
static void maxValueAtIndexK( int N, int K,
int M)
{
int S1 = 0 , S2 = 0 ;
S1 = K * (K + 1 ) / 2 ;
S2 = (N - K - 1 ) * (N - K) / 2 ;
int X = (M + S1 + S2) / N;
System.out.println(X);
}
public static void main(String[] args)
{
int N = 3 , K = 1 , M = 7 ;
maxValueAtIndexK(N, K, M);
}
}
|
Python3
def maxValueAtIndexK(N, K, M):
S1 = 0 ; S2 = 0 ;
S1 = K * (K + 1 ) / / 2 ;
S2 = (N - K - 1 ) * (N - K) / / 2 ;
X = (M + S1 + S2) / / N;
print (X);
if __name__ = = '__main__' :
N = 3 ; K = 1 ; M = 7 ;
maxValueAtIndexK(N, K, M);
|
C#
using System;
class GFG{
static void maxValueAtIndexK( int N, int K,
int M)
{
int S1 = 0, S2 = 0;
S1 = K * (K + 1) / 2;
S2 = (N - K - 1) * (N - K) / 2;
int X = (M + S1 + S2) / N;
Console.WriteLine(X);
}
static public void Main()
{
int N = 3, K = 1, M = 7;
maxValueAtIndexK(N, K, M);
}
}
|
Javascript
<script>
function maxValueAtIndexK(N, K, M)
{
let S1 = 0, S2 = 0;
S1 = K * (K + 1) / 2;
S2 = (N - K - 1) * (N - K) / 2;
let X = (M + S1 + S2) / N;
document.write(X);
}
let N = 3, K = 1, M = 7;
maxValueAtIndexK(N, K, M);
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)