Given an array arr[] of length N, the task is to find the maximum difference of integers in a subarray of size K.
Input: arr = [2, 3, -1, -5, 4, 0], K = 3
Output: 9
Explanation: Subarray [-1, -5, 4] contains the maximum difference between -5 and -4 as 9
Input: arr = [-2, -4, 0, 1, 5, -6, 9], K =4
Output: 15
Explanation: Subarray [1, 5, -6, 9] contains the maximum difference between -6 and 9 as 15
Approach: The given problem can be solved using the two-pointers technique and the sliding window approach with TreeMap data structure. Below steps can be followed to solve the problem:
- Iterate the array arr till K – 1 and insert the elements in the TreeMap,
- If the integer is already present in the TreeMap, then increase its frequency by 1
- Iterate the array arr from K till the end of the array using a pointer right and at every iteration:
- Insert the element in the TreeMap, if it does not exist or else increase its frequency by 1
- Remove the leftmost element of the sliding window if its frequency is one, or else reduce its frequency by 1
- Calculate the difference between maximum and minimum elements by retrieving the first and last element from the treeMap, and also update the result res
- Return the result res
C++
#include <bits/stdc++.h>
using namespace std;
int maxDiffK(
vector< int > arr, int K)
{
int N = arr.size();
map< int , int > tm ;
for ( int i = 0; i < K; i++)
{
int f = tm [arr[i]];
if (f == 0)
{
tm [arr[i]] = 1;
}
else
{
tm [arr[i]] = f + 1;
}
}
int maxDiff = abs (
tm .begin()->first - tm .rbegin()->first);
for ( int i = K; i < N; i++)
{
int f = tm [arr[i]];
if (f == 0)
{
tm [arr[i]] = 1;
}
else
{
tm [arr[i]] = f + 1;
}
int freq = tm [arr[i - K]];
if (freq == 1)
tm .erase( tm .find(arr[i - K]));
else
tm [arr[i - K]] = freq - 1;
maxDiff = max(
maxDiff,
abs (
tm .begin()->first - tm .rbegin()->first));
}
return maxDiff;
}
int main()
{
vector< int > arr = {2, 3, -1, -5, 4, 0};
int K = 3;
cout << (maxDiffK(arr, K));
return 0;
}
|
Java
import java.io.*;
import java.util.*;
class GFG {
public static int maxDiffK(
int arr[], int K)
{
int N = arr.length;
TreeMap<Integer, Integer> tm
= new TreeMap<>();
for ( int i = 0 ; i < K; i++) {
Integer f = tm.get(arr[i]);
if (f == null ) {
tm.put(arr[i], 1 );
}
else {
tm.put(arr[i], f + 1 );
}
}
int maxDiff = Math.abs(
tm.firstKey() - tm.lastKey());
for ( int i = K; i < N; i++) {
Integer f = tm.get(arr[i]);
if (f == null ) {
tm.put(arr[i], 1 );
}
else {
tm.put(arr[i], f + 1 );
}
int freq = tm.get(arr[i - K]);
if (freq == 1 )
tm.remove(arr[i - K]);
else
tm.put(arr[i - K], freq - 1 );
maxDiff = Math.max(
maxDiff,
Math.abs(
tm.firstKey()
- tm.lastKey()));
}
return maxDiff;
}
public static void main(String[] args)
{
int [] arr = { 2 , 3 , - 1 , - 5 , 4 , 0 };
int K = 3 ;
System.out.println(maxDiffK(arr, K));
}
}
|
Python3
def maxDiffK(arr, K):
N = len (arr)
tm = {}
for i in range ( 0 , K):
if ( not (arr[i] in tm)):
tm[arr[i]] = 1
else :
tm[arr[i]] + = 1
maxDiff = max ( list (tm)) - min ( list (tm))
for i in range (K, N):
if ( not (arr[i] in tm)):
tm[arr[i]] = 1
else :
tm[arr[i]] + = 1
freq = tm[arr[i - K]]
if (freq = = 1 ):
del tm[arr[i - K]]
else :
tm[arr[i - K]] - = 1
maxDiff = max (maxDiff, max ( list (tm)) - min ( list (tm)))
return maxDiff
if __name__ = = "__main__" :
arr = [ 2 , 3 , - 1 , - 5 , 4 , 0 ]
K = 3
print (maxDiffK(arr, K))
|
C#
using System;
using System.Collections.Generic;
using System.Linq;
class GFG
{
public static int maxDiffK( int [] arr, int K)
{
int N = arr.Length;
Dictionary< int , int > tm = new Dictionary< int , int >();
for ( int i = 0; i < K; i++)
{
if (!tm.ContainsKey(arr[i]))
{
tm[arr[i]] = 1;
}
else
{
tm[arr[i]] += 1;
}
}
int [] keys = tm.Keys.ToArray();
Array.Sort(keys);
int maxDiff = Math.Abs(keys.First() - keys.Last());
for ( int i = K; i < N; i++)
{
if (!tm.ContainsKey(arr[i]))
{
tm[arr[i]] = 1;
}
else
{
tm[arr[i]] += 1;
}
int freq = tm[arr[i - K]];
if (freq == 1)
tm.Remove(arr[i - K]);
else
tm[arr[i - K]] = freq - 1;
keys = tm.Keys.ToArray();
Array.Sort(keys);
maxDiff = Math.Max(maxDiff, Math.Abs(keys.First() - keys.Last()));
}
return maxDiff;
}
public static void Main()
{
int [] arr = { 2, 3, -1, -5, 4, 0 };
int K = 3;
Console.Write(maxDiffK(arr, K));
}
}
|
Javascript
<script>
function maxDiffK(arr, K) {
let N = arr.length;
let tm = new Map();
for (let i = 0; i < K; i++) {
let f = tm.get(arr[i]);
if (!f) {
tm.set(arr[i], 1);
}
else {
tm.set(arr[i], f + 1);
}
}
let maxDiff = Math.abs([...tm.keys()].sort((a, b) => a - b)[0] - [...tm.keys()].sort((a, b) => b - a)[0]);
for (let i = K; i < N; i++) {
let f = tm.get(arr[i]);
if (!f) {
tm.set(arr[i], 1);
}
else {
tm.set(arr[i], f + 1);
}
let freq = tm.get(arr[i - K]);
if (freq == 1)
tm. delete ((arr[i - K]));
else
tm.set(arr[i - K], freq - 1);
maxDiff = Math.max(
maxDiff,
Math.abs([...tm.keys()].sort((a, b) => a - b)[0] - [...tm.keys()].sort((a, b) => b - a)[0]));
}
return maxDiff;
}
let arr = [2, 3, -1, -5, 4, 0];
let K = 3;
document.write((maxDiffK(arr, K)))
</script>
|
Time Complexity: O(N * log K)
Auxiliary Space: O(N)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
23 Dec, 2021
Like Article
Save Article