Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Maximize difference between the Sum of the two halves of the Array after removal of N elements

  • Difficulty Level : Hard
  • Last Updated : 29 Dec, 2020

Given an integer N and array arr[] consisting of 3 * N integers, the task is to find the maximum difference between first half and second half of the array after the removal of exactly N elements from the array.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 2, arr[] = {3, 1, 4, 1, 5, 9}
Output: 1
Explanation:
Removal of arr[1] and arr[5] from the array maximizes the difference = (3 + 4) – (1 + 5) = 7 – 6 = 1.



Input: N = 1, arr[] = {1, 2, 3}
Output: -1

Approach: 
Follow the steps given below to solve the problem

  • Traverse the array from the beginning and keep updating the sum of the largest N elements from the beginning of the array.
  • Similarly, keep updating the sum of the smallest N elements from the end of the array.
  • Traverse these sums and calculate the differences at each point and update the maximum difference obtained.
  • Print the maximum difference obtained.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the maximum difference
// possible between the two halves of the array
long long FindMaxDif(vector<long long> a, int m)
{
    int n = m / 3;
 
    vector<long long> l(m + 5), r(m + 5);
 
    // Stores n maximum values from the start
    multiset<long long> s;
 
    for (int i = 1; i <= m; i++) {
 
        // Insert first n elements
        if (i <= n) {
 
            // Update sum of largest n
            // elements from left
            l[i] = a[i - 1] + l[i - 1];
            s.insert(a[i - 1]);
        }
 
        // For the remaining elements
        else {
            l[i] = l[i - 1];
 
            // Obtain minimum value
            // in the set
            long long d = *s.begin();
 
            // Insert only if it is greater
            // than minimum value
            if (a[i - 1] > d) {
 
                // Update sum from left
                l[i] -= d;
                l[i] += a[i - 1];
 
                // Remove the minimum
                s.erase(s.find(d));
 
                // Insert the current element
                s.insert(a[i - 1]);
            }
        }
    }
 
    // Clear the set
    s.clear();
 
    // Store n minimum elements from the end
    for (int i = m; i >= 1; i--) {
 
        // Insert the last n elements
        if (i >= m - n + 1) {
 
            // Update sum of smallest n
            // elements from right
            r[i] = a[i - 1] + r[i + 1];
            s.insert(a[i - 1]);
        }
 
        // For the remaining elements
        else {
 
            r[i] = r[i + 1];
 
            // Obtain the minimum
            long long d = *s.rbegin();
 
            // Insert only if it is smaller
            // than maximum value
            if (a[i - 1] < d) {
 
                // Update sum from right
                r[i] -= d;
                r[i] += a[i - 1];
 
                // Remove the minimum
                s.erase(s.find(d));
 
                // Insert the new element
                s.insert(a[i - 1]);
            }
        }
    }
 
    long long ans = -9e18L;
 
    for (int i = n; i <= m - n; i++) {
 
        // Compare the difference and
        // store the maximum
        ans = max(ans, l[i] - r[i + 1]);
    }
 
    // Return the maximum
    // possible difference
    return ans;
}
 
// Driver Code
int main()
{
 
    vector<long long> vtr = { 3, 1, 4, 1, 5, 9 };
    int n = vtr.size();
 
    cout << FindMaxDif(vtr, n);
 
    return 0;
}

Python3




# Python3 Program to implement
# the above approach
 
# Function to print the maximum difference
# possible between the two halves of the array
def FindMaxDif(a, m) :
 
    n = m // 3
 
    l = [0] * (m + 5)
    r = [0] * (m + 5)
 
    # Stores n maximum values from the start
    s = []
 
    for i in range(1, m + 1) :
 
        # Insert first n elements
        if (i <= n) :
 
            # Update sum of largest n
            # elements from left
            l[i] = a[i - 1] + l[i - 1]
            s.append(a[i - 1])
 
        # For the remaining elements
        else :
            l[i] = l[i - 1]
 
            # Obtain minimum value
            # in the set
            s.sort()
            d = s[0]
 
            # Insert only if it is greater
            # than minimum value
            if (a[i - 1] > d) :
 
                # Update sum from left
                l[i] -= d
                l[i] += a[i - 1]
 
                # Remove the minimum
                s.remove(d)
 
                # Insert the current element
                s.append(a[i - 1])
 
    # Clear the set
    s.clear()
 
    # Store n minimum elements from the end
    for i in range(m, 0, -1) :
 
        # Insert the last n elements
        if (i >= m - n + 1) :
 
            # Update sum of smallest n
            # elements from right
            r[i] = a[i - 1] + r[i + 1]
            s.append(a[i - 1])
 
        # For the remaining elements
        else :
 
            r[i] = r[i + 1]
            s.sort()
             
            # Obtain the minimum
            d = s[-1]
 
            # Insert only if it is smaller
            # than maximum value
            if (a[i - 1] < d) :
 
                # Update sum from right
                r[i] -= d
                r[i] += a[i - 1]
 
                # Remove the minimum
                s.remove(d)
 
                # Insert the new element
                s.append(a[i - 1])
 
    ans = -9e18
 
    for i in range(n, m - n + 1) :
 
        # Compare the difference and
        # store the maximum
        ans = max(ans, l[i] - r[i + 1])
 
    # Return the maximum
    # possible difference
    return ans
 
# Driver code 
vtr = [ 3, 1, 4, 1, 5, 9 ]
n = len(vtr)
 
print(FindMaxDif(vtr, n))
 
# This code is contributed by divyesh072019

C#




// C# program to implement
// the above approach
using System;
using System.Collections.Generic;
 
class GFG{
     
// Function to print the maximum difference
// possible between the two halves of the array
static long FindMaxDif(List<long> a, int m)
{
    int n = m / 3;
     
    long[] l = new long[m + 5];
    long[] r = new long[m + 5];
   
    // Stores n maximum values from the start
    List<long> s = new List<long>();
   
    for(int i = 1; i <= m; i++)
    {
         
        // Insert first n elements
        if (i <= n)
        {
             
            // Update sum of largest n
            // elements from left
            l[i] = a[i - 1] + l[i - 1];
            s.Add(a[i - 1]);
        }
         
        // For the remaining elements
        else
        {
            l[i] = l[i - 1];
             
            s.Sort();
             
            // Obtain minimum value
            // in the set
            long d = s[0];
   
            // Insert only if it is greater
            // than minimum value
            if (a[i - 1] > d)
            {
                 
                // Update sum from left
                l[i] -= d;
                l[i] += a[i - 1];
   
                // Remove the minimum
                s.Remove(d);
   
                // Insert the current element
                s.Add(a[i - 1]);
            }
        }
    }
   
    // Clear the set
    s.Clear();
   
    // Store n minimum elements from the end
    for(int i = m; i >= 1; i--)
    {
         
        // Insert the last n elements
        if (i >= m - n + 1)
        {
             
            // Update sum of smallest n
            // elements from right
            r[i] = a[i - 1] + r[i + 1];
            s.Add(a[i - 1]);
        }
   
        // For the remaining elements
        else
        {
            r[i] = r[i + 1];
             
            s.Sort();
             
            // Obtain the minimum
            long d = s[s.Count - 1];
   
            // Insert only if it is smaller
            // than maximum value
            if (a[i - 1] < d)
            {
                 
                // Update sum from right
                r[i] -= d;
                r[i] += a[i - 1];
   
                // Remove the minimum
                s.Remove(d);
   
                // Insert the new element
                s.Add(a[i - 1]);
            }
        }
    }
   
    long ans = (long)(-9e18);
   
    for(int i = n; i <= m - n; i++)
    {
         
        // Compare the difference and
        // store the maximum
        ans = Math.Max(ans, l[i] - r[i + 1]);
    }
   
    // Return the maximum
    // possible difference
    return ans;
}
 
// Driver Code
static void Main()
{
    List<long> vtr = new List<long>(
        new long[]{ 3, 1, 4, 1, 5, 9 });
    int n = vtr.Count;
     
    Console.Write(FindMaxDif(vtr, n));
}
}
 
// This code is contributed by divyeshrabadiya07
Output: 
1

 

Time Complexity: O(NlogN)
Auxiliary Space: O(N)




My Personal Notes arrow_drop_up

Start Your Coding Journey Now!