# Maximize count of groups from given 0s, 1s and 2s with sum divisible by 3

Given three integers, **C0, C1 and C2** frequencies of 0s, 1s and 2s in a group **S**. The task is to find the maximum number of groups having the **sum divisible by 3**, the condition is the **sum(S)** is divisible by 3 and the union of all groups must be equal to** S**

**Examples:**

: C0 = 2, C1 = 4, C2 = 1Input: 4Output: it can divide the group S = {0, 0, 1, 1, 1, 1, 2} into four groups {0}, {0}, {1, 1, 1}, {1, 2}. It can be proven that 4 is the maximum possible answer.Explanation

: C0 = 250, C1 = 0, C2 = 0Input: 250Output

**Approach: **This problem can be solved using the **Greedy Algorithm**. follow the steps given below to solve the problem.

- Initialize a variable
**maxAns**, say 0, to store the maximum number of groups. - Add
**C0 to maxAns**, because every**{0}**can be a group such that the sum is**divisible by 3**. - Initialize a variable
**k**, say**min(C1, C2)**, and add it to maxAns, because at least**k**,**{1, 2}**group can be created. - Add
**abs(C1-C2) /3 to maxAns**, it will contribution of the remaining**1s or 2s**. - Return
**maxAns.**

Below is the implementation of the above approach.

## C++

`// C++ program for above approach` `#include <bits/stdc++.h>` `using` `namespace` `std;` `int` `maxGroup(` `int` `c0, ` `int` `c1, ` `int` `c2)` `{` ` ` `// Initializing to store maximum number of groups` ` ` `int` `maxAns = 0;` ` ` `// Adding C0` ` ` `maxAns += c0;` ` ` `// Taking Minimum of c1, c2 as minimum number of` ` ` `// pairs must be minimum of c1, c2` ` ` `int` `k = min(c1, c2);` ` ` `maxAns += k;` ` ` `// If there is any remaining element in c1 or c2` ` ` `// then it must be the absolute difference of c1 and` ` ` `// c2 and dividing it by 3 to make it one pair` ` ` `maxAns += ` `abs` `(c1 - c2) / 3;` ` ` `return` `maxAns;` `}` `int` `main()` `{` ` ` `int` `C0 = 2, C1 = 4, C2 = 1;` ` ` `cout << maxGroup(C0, C1, C2);` ` ` `return` `0;` `}` `// This code is contributed by maddler` |

## Java

`// Java program for above approach` `import` `java.io.*;` `class` `GFG {` ` ` `// Function to calculate maximum number of groups` ` ` `public` `static` `int` `maxGroup(` `int` `c0, ` `int` `c1, ` `int` `c2)` ` ` `{` ` ` `// Initializing to store maximum number of groups` ` ` `int` `maxAns = ` `0` `;` ` ` `// Adding C0` ` ` `maxAns += c0;` ` ` `// Taking Minimum of c1, c2 as minimum number of` ` ` `// pairs must be minimum of c1, c2` ` ` `int` `k = Math.min(c1, c2);` ` ` `maxAns += k;` ` ` `// If there is any remaining element in c1 or c2` ` ` `// then it must be the absolute difference of c1 and` ` ` `// c2 and dividing it by 3 to make it one pair` ` ` `maxAns += Math.abs(c1 - c2) / ` `3` `;` ` ` `return` `maxAns;` ` ` `}` ` ` `// Driver Code` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `// Given Input` ` ` `int` `C0 = ` `2` `, C1 = ` `4` `, C2 = ` `1` `;` ` ` `// Function Call` ` ` `System.out.println(maxGroup(C0, C1, C2));` ` ` `}` `}` |

## Python3

`# python 3 program for above approach` `def` `maxGroup(c0, c1, c2):` ` ` ` ` `# Initializing to store maximum number of groups` ` ` `maxAns ` `=` `0` ` ` `# Adding C0` ` ` `maxAns ` `+` `=` `c0` ` ` `# Taking Minimum of c1, c2 as minimum number of` ` ` `# pairs must be minimum of c1, c2` ` ` `k ` `=` `min` `(c1, c2)` ` ` `maxAns ` `+` `=` `k` ` ` `# If there is any remaining element in c1 or c2` ` ` `# then it must be the absolute difference of c1 and` ` ` `# c2 and dividing it by 3 to make it one pair` ` ` `maxAns ` `+` `=` `abs` `(c1 ` `-` `c2) ` `/` `/` `3` ` ` `return` `maxAns` ` ` `# Driver code` `if` `__name__ ` `=` `=` `'__main__'` `:` ` ` `C0 ` `=` `2` ` ` `C1 ` `=` `4` ` ` `C2 ` `=` `1` ` ` `print` `(maxGroup(C0, C1, C2))` ` ` `# This code is contributed by ipg2016107.` |

## C#

`// C# program for above approach` `using` `System;` `class` `GFG{` ` ` `// Function to calculate maximum number of groups ` `public` `static` `int` `maxGroup(` `int` `c0, ` `int` `c1, ` `int` `c2)` `{` ` ` ` ` `// Initializing to store maximum number` ` ` `// of groups` ` ` `int` `maxAns = 0;` ` ` `// Adding C0` ` ` `maxAns += c0;` ` ` `// Taking Minimum of c1, c2 as minimum number` ` ` `// of pairs must be minimum of c1, c2` ` ` `int` `k = Math.Min(c1, c2);` ` ` `maxAns += k;` ` ` `// If there is any remaining element` ` ` `// in c1 or c2 then it must be the` ` ` `// absolute difference of c1 and c2` ` ` `// and dividing it by 3 to make it one pair` ` ` `maxAns += Math.Abs(c1 - c2) / 3;` ` ` `return` `maxAns;` `}` `// Driver Code` `static` `public` `void` `Main()` `{` ` ` ` ` `// Given Input` ` ` `int` `C0 = 2, C1 = 4, C2 = 1;` ` ` ` ` `// Function Call` ` ` `Console.WriteLine(maxGroup(C0, C1, C2));` `}` `}` `// This code is contributed by maddler` |

## Javascript

`<script>` ` ` `// JavaScript program for the above approach;` ` ` `function` `maxGroup(c0, c1, c2)` ` ` `{` ` ` `// Initializing to store maximum number of groups` ` ` `let maxAns = 0;` ` ` `// Adding C0` ` ` `maxAns += c0;` ` ` `// Taking Minimum of c1, c2 as minimum number of` ` ` `// pairs must be minimum of c1, c2` ` ` `let k = Math.min(c1, c2);` ` ` `maxAns += k;` ` ` `// If there is any remaining element in c1 or c2` ` ` `// then it must be the absolute difference of c1 and` ` ` `// c2 and dividing it by 3 to make it one pair` ` ` `maxAns += Math.abs(c1 - c2) / 3;` ` ` `return` `maxAns;` ` ` `}` ` ` `let C0 = 2, C1 = 4, C2 = 1;` ` ` `document.write(maxGroup(C0, C1, C2));` ` ` ` ` `// This code is contributed by Potta Lokesh` ` ` `</script>` |

**Output:**

4

* Time Complexity:* O(1)

*O(1)*

**Auxiliary Space:**