# Maximize count of corresponding same elements in given permutations using cyclic rotations

Given two permutations P1 and P2 of numbers from 1 to N, the task is to find the maximum count of corresponding same elements in the given permutations by performing a cyclic left or right shift on P1
Examples:

Input: P1 = [5 4 3 2 1], P2 = [1 2 3 4 5]
Output:
Explanation:
We have a matching pair at index 2 for element 3.
Input: P1 = [1 3 5 2 4 6], P2 = [1 5 2 4 3 6]
Output:
Explanation:
Cyclic shift of second permutation towards right would give 6 1 5 2 4 3 and we get a match of 5, 2, 4. Hence the answer is 3 matching pairs.

Naive Approach: The naive approach is to check for every possible shift in both left and right direction count the number of matching pairs by looping through all the permutations formed.
Time Complexity: O(N2
Auxiliary Space: O(1)
Efficient Approach: The above naive approach can be optimised. The idea is for every element store the smaller distance between positions of this element from left and right sides in separate arrays. Hence the solution to the problem will be calculated as maximum frequency of an element from the two separated arrays. Below are the steps:

1. Store the position of all the elements of the permutation P2 in an array(say store[]).
2. For each element in the permutation P1, do the following:
• Find the difference(say diff) between the position of the current element in P2 with the position in P1.
• If diff is less than 0 then update diff to (N – diff).
• Store the frequency of current difference diff in a map.
3. After the above steps, the maximum frequency stored in the map is the maximum number of equal elements after rotation on P1.

Below is the implementation of above approach:

## C++

 `// C++ program for the above approach ` `#include ` `using` `namespace` `std; ` ` `  `// Function to maximize the matching ` `// pairs between two permutation ` `// using left and right rotation ` `int` `maximumMatchingPairs(``int` `perm1[], ` `                         ``int` `perm2[], ` `                         ``int` `n) ` `{ ` `    ``// Left array store distance of element ` `    ``// from left side and right array store ` `    ``// distance of element from right side ` `    ``int` `left[n], right[n]; ` ` `  `    ``// Map to store index of elements ` `    ``map<``int``, ``int``> mp1, mp2; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``mp1[perm1[i]] = i; ` `    ``} ` `    ``for` `(``int` `j = 0; j < n; j++) { ` `        ``mp2[perm2[j]] = j; ` `    ``} ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// idx1 is index of element ` `        ``// in first permutation ` ` `  `        ``// idx2 is index of element ` `        ``// in second permutation ` `        ``int` `idx2 = mp2[perm1[i]]; ` `        ``int` `idx1 = i; ` ` `  `        ``if` `(idx1 == idx2) { ` ` `  `            ``// If element if present on same ` `            ``// index on both permutations then ` `            ``// distance is zero ` `            ``left[i] = 0; ` `            ``right[i] = 0; ` `        ``} ` `        ``else` `if` `(idx1 < idx2) { ` ` `  `            ``// Calculate distance from left ` `            ``// and right side ` `            ``left[i] = (n - (idx2 - idx1)); ` `            ``right[i] = (idx2 - idx1); ` `        ``} ` `        ``else` `{ ` ` `  `            ``// Calculate distance from left ` `            ``// and right side ` `            ``left[i] = (idx1 - idx2); ` `            ``right[i] = (n - (idx1 - idx2)); ` `        ``} ` `    ``} ` ` `  `    ``// Maps to store frequencies of elements ` `    ``// present in left and right arrays ` `    ``map<``int``, ``int``> freq1, freq2; ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``freq1[left[i]]++; ` `        ``freq2[right[i]]++; ` `    ``} ` ` `  `    ``int` `ans = 0; ` ` `  `    ``for` `(``int` `i = 0; i < n; i++) { ` ` `  `        ``// Find maximum frequency ` `        ``ans = max(ans, max(freq1[left[i]], ` `                           ``freq2[right[i]])); ` `    ``} ` ` `  `    ``// Return the result ` `    ``return` `ans; ` `} ` ` `  `// Driver Code ` `int` `main() ` `{ ` `    ``// Given permutations P1 and P2 ` `    ``int` `P1[] = { 5, 4, 3, 2, 1 }; ` `    ``int` `P2[] = { 1, 2, 3, 4, 5 }; ` `    ``int` `n = ``sizeof``(P1) / ``sizeof``(P1); ` ` `  `    ``// Function Call ` `    ``cout << maximumMatchingPairs(P1, P2, n); ` `    ``return` `0; ` `} `

## Python3

 `# Python3 program for the above approach ` `from` `collections ``import` `defaultdict ` ` `  `# Function to maximize the matching ` `# pairs between two permutation ` `# using left and right rotation ` `def` `maximumMatchingPairs(perm1, perm2, n): ` ` `  `    ``# Left array store distance of element ` `    ``# from left side and right array store ` `    ``# distance of element from right side ` `    ``left ``=` `[``0``] ``*` `n ` `    ``right ``=` `[``0``] ``*` `n ` ` `  `    ``# Map to store index of elements ` `    ``mp1 ``=` `{} ` `    ``mp2 ``=` `{} ` `    ``for` `i ``in` `range` `(n): ` `        ``mp1[perm1[i]] ``=` `i ` `     `  `    ``for` `j ``in` `range` `(n): ` `        ``mp2[perm2[j]] ``=` `j ` `     `  `    ``for` `i ``in` `range` `(n): ` ` `  `        ``# idx1 is index of element ` `        ``# in first permutation ` ` `  `        ``# idx2 is index of element ` `        ``# in second permutation ` `        ``idx2 ``=` `mp2[perm1[i]] ` `        ``idx1 ``=` `i ` ` `  `        ``if` `(idx1 ``=``=` `idx2): ` ` `  `            ``# If element if present on same ` `            ``# index on both permutations then ` `            ``# distance is zero ` `            ``left[i] ``=` `0` `            ``right[i] ``=` `0` `         `  `        ``elif` `(idx1 < idx2): ` ` `  `            ``# Calculate distance from left ` `            ``# and right side ` `            ``left[i] ``=` `(n ``-` `(idx2 ``-` `idx1)) ` `            ``right[i] ``=` `(idx2 ``-` `idx1) ` `         `  `        ``else` `: ` ` `  `            ``# Calculate distance from left ` `            ``# and right side ` `            ``left[i] ``=` `(idx1 ``-` `idx2) ` `            ``right[i] ``=` `(n ``-` `(idx1 ``-` `idx2)) ` ` `  `    ``# Maps to store frequencies of elements ` `    ``# present in left and right arrays ` `    ``freq1 ``=` `defaultdict (``int``) ` `    ``freq2 ``=` `defaultdict (``int``) ` `    ``for` `i ``in` `range` `(n): ` `        ``freq1[left[i]] ``+``=` `1` `        ``freq2[right[i]] ``+``=` `1` ` `  `    ``ans ``=` `0` ` `  `    ``for` `i ``in` `range``( n): ` ` `  `        ``# Find maximum frequency ` `        ``ans ``=` `max``(ans, ``max``(freq1[left[i]], ` `                           ``freq2[right[i]])) ` ` `  `    ``# Return the result ` `    ``return` `ans ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``: ` `     `  `    ``# Given permutations P1 and P2 ` `    ``P1 ``=` `[ ``5``, ``4``, ``3``, ``2``, ``1` `] ` `    ``P2 ``=` `[ ``1``, ``2``, ``3``, ``4``, ``5` `] ` `    ``n ``=` `len``(P1) ` ` `  `    ``# Function Call ` `    ``print``(maximumMatchingPairs(P1, P2, n)) ` ` `  `# This code is contributed by chitranayal `

Output:

```1
```

Time Complexity: O(N)
Auxiliary Space: O(N) My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : chitranayal