Maximize array sum after K negations | Set 1

Given an array of size n and a number k. We must modify array K number of times. Here modify array means in each operation we can replace any array element arr[i] by -arr[i]. We need to perform this operation in such a way that after K operations, sum of array must be maximum?

Examples :

Input : arr[] = {-2, 0, 5, -1, 2} 
        K = 4
Output: 10
// Replace (-2) by -(-2), array becomes {2, 0, 5, -1, 2}
// Replace (-1) by -(-1), array becomes {2, 0, 5, 1, 2}
// Replace (0) by -(0), array becomes {2, 0, 5, 1, 2}
// Replace (0) by -(0), array becomes {2, 0, 5, 1, 2}

Input : arr[] = {9, 8, 8, 5} 
        K = 3
Output: 20


This problem has very simple solution, we just have to replace the minimum element arr[i] in array by -arr[i] for current operation. In this way we can make sum of array maximum after K operations. Once interesting case is, once minimum element becomes 0, we don’t need to make any more changes.

C++

// C++ program to to maximize array sum after
// k operations.
#include<bits/stdc++.h>
using namespace std;
  
// This function does k operations on array
// in a way that maximize the array sum.
// index --> stores the index of current minimum
//           element for j'th operation
int maximumSum(int arr[], int n, int k)
{
    // Modify array K number of times
    for (int i=1; i<=k; i++)
    {
        int min = INT_MAX;
        int index = -1;
  
        // Find minimum element in array for
        // current operation and modify it
        // i.e; arr[j] --> -arr[j]
        for (int j=0; j<n; j++)
        {
            if (arr[j] < min)
            {
                min = arr[j];
                index = j;
            }
        }
  
        // this the condition if we find 0 as
        // minimum element, so it will useless to
        // replace 0 by -(0) for remaining operations
        if (min == 0)
            break;
  
        // Modify element of array
        arr[index] = -arr[index];
    }
  
    // Calculate sum of array
    int sum = 0;
    for (int i=0; i<n; i++)
        sum += arr[i];
    return sum;
}
  
// Driver program to test the case
int main()
{
    int arr[] = {-2, 0, 5, -1, 2};
    int k = 4;
    int n = sizeof(arr)/sizeof(arr[0]);
    cout << maximumSum(arr, n, k);
    return 0;
}

Java

// Java program to to maximize array 
// sum after k operations.
  
class GFG
{
    // This function does k operations 
    // on array in a way that maximize 
    // the array sum. index --> stores 
    // the index of current minimum
    // element for j'th operation
    static int maximumSum(int arr[], int n, int k)
    {
        // Modify array K number of times
        for (int i = 1; i <= k; i++)
        {
            int min = +2147483647;
            int index = -1;
      
            // Find minimum element in array for
            // current operation and modify it
            // i.e; arr[j] --> -arr[j]
            for (int j=0; j<n; j++)
            {
                if (arr[j] < min)
                {
                    min = arr[j];
                    index = j;
                }
            }
      
            // this the condition if we find 0 as
            // minimum element, so it will useless to
            // replace 0 by -(0) for remaining operations
            if (min == 0)
                break;
      
            // Modify element of array
            arr[index] = -arr[index];
        }
      
        // Calculate sum of array
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
      
      
    // Driver program
    public static void main(String arg[])
    {
    int arr[] = {-2, 0, 5, -1, 2};
        int k = 4;
        int n = arr.length;
        System.out.print(maximumSum(arr, n, k));
    }
}
  
// This code is contributed by Anant Agarwal.

Python3

# Python3 program to to maximize 
# array sum after k operations.
  
# This function does k operations on array
# in a way that maximize the array sum.
# index --> stores the index of current 
# minimum element for j'th operation
def maximumSum(arr, n, k):
  
    # Modify array K number of times
    for i in range(1, k + 1):
      
        min = +2147483647
        index = -1
  
        # Find minimum element in array for
        # current operation and modify it
        # i.e; arr[j] --> -arr[j]
        for j in range(n):
          
            if (arr[j] < min):
              
                min = arr[j]
                index = j
  
        # this the condition if we find 0 as
        # minimum element, so it will useless to
        # replace 0 by -(0) for remaining operations
        if (min == 0):
            break
  
        # Modify element of array
        arr[index] = -arr[index]
      
  
    # Calculate sum of array
    sum = 0
    for i in range(n):
        sum += arr[i]
    return sum
  
# Driver program
arr = [-2, 0, 5, -1, 2]
k = 4
n = len(arr)
print(maximumSum(arr, n, k))
  
# This code is contributed by Anant Agarwal.

C#

// C# program to to maximize array 
// sum after k operations.
using System;
  
class GFG
{
      
    // This function does k operations 
    // on array in a way that maximize 
    // the array sum. index --> stores 
    // the index of current minimum
    // element for j'th operation
    static int maximumSum(int []arr, int n, 
                          int k)
    {
          
        // Modify array K number of times
        for (int i = 1; i <= k; i++)
        {
            int min = +2147483647;
            int index = -1;
      
            // Find minimum element in array for
            // current operation and modify it
            // i.e; arr[j] --> -arr[j]
            for (int j = 0; j < n; j++)
            {
                if (arr[j] < min)
                {
                    min = arr[j];
                    index = j;
                }
            }
      
            // this the condition if we find
            // 0 as minimum element, so it
            // will useless to replace 0 by -(0)
            // for remaining operations
            if (min == 0)
                break;
      
            // Modify element of array
            arr[index] = -arr[index];
        }
      
        // Calculate sum of array
        int sum = 0;
        for (int i = 0; i < n; i++)
            sum += arr[i];
        return sum;
    }
      
    // Driver code
    public static void Main()
    {
        int []arr = {-2, 0, 5, -1, 2};
        int k = 4;
        int n = arr.Length;
        Console.Write(maximumSum(arr, n, k));
    }
}
  
// This code is contributed by Nitin Mittal.

PHP

<?php
// PHP program to to maximize 
// array sum after k operations.
  
// This function does k operations 
// on array in a way that maximize 
// the array sum. index --> stores
// the index of current minimum
// element for j'th operation
function maximumSum($arr, $n, $k)
{
    $INT_MAX = 0;
    // Modify array K
    // number of times
    for ($i = 1; $i <= $k; $i++)
    {
        $min = $INT_MAX;
        $index = -1;
  
        // Find minimum element in 
        // array for current operation
        // and modify it i.e; 
        // arr[j] --> -arr[j]
        for ($j = 0; $j < $n; $j++)
        {
            if ($arr[$j] < $min)
            {
                $min = $arr[$j];
                $index = $j;
            }
        }
  
        // this the condition if we
        // find 0 as minimum element,so 
        // it will useless to replace 0 
        // by -(0) for remaining operations
        if ($min == 0)
            break;
  
        // Modify element of array
        $arr[$index] = -$arr[$index];
    }
  
    // Calculate sum of array
    $sum = 0;
    for ($i = 0; $i < $n; $i++)
        $sum += $arr[$i];
    return $sum;
}
  
// Driver Code
$arr = array(-2, 0, 5, -1, 2);
$k = 4;
$n = sizeof($arr) / sizeof($arr[0]);
echo maximumSum($arr, $n, $k);
      
// This code is contributed
// by nitin mittal. 
?>


Output :

10

Time Complexity : O(k*n)
Auxiliary Space : O(1)

Maximize array sum after K negations | Set 2

This article is contributed by Shashank Mishra ( Gullu ). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up


Improved By : nitin mittal

Article Tags :
Practice Tags :



Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.