Skip to content
Related Articles
Open in App
Not now

Related Articles

Maximize 0s in given Array after replacing each element A[i] with (A[i]*D + B[i])

Improve Article
Save Article
  • Last Updated : 03 Feb, 2023
Improve Article
Save Article

Given two arrays A[] and B[] consisting of N integers, the task is to find the maximum number of 0s in the array A[] that can be made after replacing each array element A[i] with A[i]*D + B[i] by choosing any value of D.

Examples:

Input: A[] = {1, 2, -1}, B[] = {-6, -12, 6}
Output: 3
Explanation:
Consider the value of D as 6. Now the array A[] modifies to {1*6 – 6, 2*6 – 12, -1*6 + 6} = {0, 0, 0}.
Therefore, the value of D as 6 makes all the array elements A[i] to 0. Hence, print 3.

Input: A[] = {0, 7, 2}, B[] = {0, 5, -4}
Output: 2

Approach: The given problem can be solved by calculating the value of D required to make each array element A[i] to 0 and store the values in a Map. Follow the steps below to solve the problem:

  • Initialize a Map, say M and two integers, say cnt and ans as 0.
  • Iterate over the range [0, N – 1] using the variable i and perform the following steps:
    • Initialize two integers num as -B[i] and den as A[i].
    • If the value of den is not equal to 0 then divide both the values num and den by the GCD of num and den.
    • If the value of num is not greater than 0, then multiply both num and den by -1.
    • If the values of den and num are both equal to 0, then increment the value of cnt by 1 and if the value of den is not equal to 0 then increment the value of mp[{num, den}] by 1 and update the value of ans as max(ans, mp[{num, den}].
  • After completing the above steps, print the value of ans + cnt as the possible value of D that maximize the count of 0s in the given array A[i] after performing the given operations.

Below is the implementation of the above approach:
 

C++




// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the maximum number
// of 0s in the array A[] after changing
// the array element to A[i]*D + B[i]
void maxZeroes(vector<int>& A,
               vector<int>& B)
{
    // Stores the frequency of fractions
    // needed to make each element 0
    map<pair<int, int>, int> mp;
    int N = A.size();
 
    // Stores the maximum number of 0
    int ans = 0;
    int cnt = 0;
 
    // Traverse the array
    for (int i = 0; i < N; i++) {
 
        // Find the numerator and
        // the denominator
        int num = -B[i];
        int den = A[i];
 
        int gc = __gcd(num, den);
 
        // Check if den is not equal
        // to 0
        if (den != 0) {
 
            // Divide num and den
            // by their gcd
            num /= gc;
            den /= gc;
        }
 
        // Check if num is not
        // greater than 0
        if (num <= 0) {
            num *= -1;
            den *= -1;
        }
 
        // Check if both num and den
        // are equal to 0
        if (den == 0 and num == 0)
            cnt++;
 
        if (den != 0) {
 
            // Increment the value of
            // {num, den} in the map
            mp[{ num, den }]++;
 
            // Update the value of ans
            ans = max(mp[{ num, den }], ans);
        }
    }
 
    // Print the value of ans+cnt
    cout << ans + cnt << endl;
}
 
// Driver Code
int main()
{
    vector<int> A = { 1, 2, -1 };
    vector<int> B = { -6, -12, 6 };
    maxZeroes(A, B);
 
    return 0;
}

Python3




# Python program for the above approach
from math import gcd
 
# Function to find the maximum number
# of 0s in the array A[] after changing
# the array element to A[i]*D + B[i]
def maxZeroes(A,B):
    # Stores the frequency of fractions
    # needed to make each element 0
    mp = {}
    N = len(A)
 
    # Stores the maximum number of 0
    ans = 0
    cnt = 0
 
    # Traverse the array
    for i in range(N):
        # Find the numerator and
        # the denominator
        num = -B[i]
        den = A[i]
 
        gc = gcd(num, den)
 
        # Check if den is not equal
        # to 0
        if (den != 0):
 
            # Divide num and den
            # by their gcd
            num //= gc
            den //= gc
 
        # Check if num is not
        # greater than 0
        if (num <= 0):
            num *= -1
            den *= -1
 
        # Check if both num and den
        # are equal to 0
        if (den == 0 and num == 0):
            cnt+=1
 
        if (den != 0):
 
            # Increment the value of
            # {num, den} in the map
            mp[(num, den)] = mp.get((num, den),0)+1
 
            # Update the value of ans
            ans = max(mp[(num, den )], ans)
 
    # Print the value of ans+cnt
    print (ans + cnt)
 
# Driver Code
if __name__ == '__main__':
    A = [1, 2, -1]
    B = [-6, -12, 6]
    maxZeroes(A, B)
 
# This code is contributed by mohit kumar 29.

Javascript




<script>
 
// JavaScript program for the above approach
 
 
function __gcd(a, b) {
    if (b == 0)
    return a;
    return __gcd(b, a % b);
 }
  
 
// Function to find the maximum number
// of 0s in the array A[] after changing
// the array element to A[i]*D + B[i]
function maxZeroes(A, B) {
    // Stores the frequency of fractions
    // needed to make each element 0
    let mp = new Map();
    let N = A.length;
 
    // Stores the maximum number of 0
    let ans = 0;
    let cnt = 0;
 
    // Traverse the array
    for (let i = 0; i < N; i++) {
 
        // Find the numerator and
        // the denominator
        let num = -B[i];
        let den = A[i];
 
        let gc = __gcd(num, den);
 
        // Check if den is not equal
        // to 0
        if (den != 0) {
 
            // Divide num and den
            // by their gcd
            num /= gc;
            den /= gc;
        }
 
        // Check if num is not
        // greater than 0
        if (num <= 0) {
            num *= -1;
            den *= -1;
        }
 
        // Check if both num and den
        // are equal to 0
        if (den == 0 && num == 0)
            cnt++;
 
        if (den != 0) {
 
            // Increment the value of
            // {num, den} in the map
            if (mp.has(`${num},${den}`)) {
                mp.set(`${num},${den}`, mp.get(`${num},${den}`) + 1)
            } else {
                mp.set(`${num},${den}`, 1)
            }
 
            // Update the value of ans
            ans = Math.max(mp.get(`${num},${den}`), ans);
        }
    }
 
     // Print the value of ans+cnt
    document.write(ans + cnt + "<br>");
}
 
// Driver Code
 
let A = [1, 2, -1];
let B = [-6, -12, 6];
maxZeroes(A, B);
 
</script>

Java




import java.util.*;
 
public class GFG {
     
    // Function to find the maximum number
    // of 0s in the array A[] after changing
    // the array element to A[i]*D + B[i]
     
    public static void maxZeroes(List<Integer> A, List<Integer> B) {
        // Stores the frequency of fractions
        // needed to make each element 0
        Map<Pair<Integer, Integer>, Integer> mp = new HashMap<>();
        int N = A.size();
 
        // Stores the maximum number of 0
        int ans = 0;
        int cnt = 0;
 
        // Traverse the array
        for (int i = 0; i < N; i++) {
 
            // Find the numerator and
            // the denominator
            int num = -B.get(i);
            int den = A.get(i);
 
            int gc = gcd(num, den);
 
            // Check if den is not equal
            // to 0
            if (den != 0) {
 
                // Divide num and den
                // by their gcd
                num /= gc;
                den /= gc;
            }
 
            // Check if num is not
            // greater than 0
            if (num <= 0) {
                num *= -1;
                den *= -1;
            }
 
            // Check if both num and den
            // are equal to 0
            if (den == 0 && num == 0)
                cnt++;
 
            if (den != 0) {
 
                // Increment the value of
                // {num, den} in the map
                Pair<Integer, Integer> currentPair = Pair.of(num, den);
                if(currentPair != null){
                    mp.put(currentPair, mp.getOrDefault(currentPair, 0) + 1);
                }
 
                // Update the value of ans
                if(mp.containsKey(currentPair)){
                    ans = Math.max(mp.get(currentPair), ans);
                }
            }
        }
 
        // Print the value of ans+cnt
        System.out.println(ans + cnt);
    }
 
    // Find the gcd of two numbers
    public static int gcd(int a, int b) {
        if (b == 0)
            return a;
        return gcd(b, a % b);
    }
     
     
    // Driver code
    public static void main(String[] args) {
         
        List<Integer> A = Arrays.asList(1,2,-1);
        List<Integer> B = Arrays.asList(-6,-12,6);
        maxZeroes(A, B);
    }
}
 
// custom Pair class
 
class Pair<T, U> {
    T first;
    U second;
 
    public Pair(T first, U second) {
        this.first = first;
        this.second = second;
    }
 
    public T getFirst() {
        return first;
    }
 
    public U getSecond() {
        return second;
    }
 
    public static <T, U> Pair<T, U> of(T first, U second) {
        return new Pair<T, U>(first, second);
    }
 
    @Override
    public boolean equals(Object o) {
        if (this == o) return true;
        if (o == null || getClass() != o.getClass()) return false;
        Pair<?, ?> pair = (Pair<?, ?>) o;
        return Objects.equals(first, pair.first) &&
                Objects.equals(second, pair.second);
    }
 
    @Override
    public int hashCode() {
        return Objects.hash(first, second);
    }
}

Output: 

3

 

Time Complexity: O(N log N)
Auxiliary Space: O(N)


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!