Maximal Clique Problem | Recursive Solution

Given a small graph with N nodes and E edges, the task is to find the maximum clique in the given graph. A clique is a complete subgraph of a given graph. This means that all nodes in the said subgraph are directly connected to each other, or there is an edge between any two nodes in the subgraph. The maximal clique is the complete subgraph of a given graph which contains the maximum number of nodes.

Examples:

Input: N = 4, edges[][] = {{1, 2}, {2, 3}, {3, 1}, {4, 3}, {4, 1}, {4, 2}}
Output: 4

Input: N = 5, edges[][] = {{1, 2}, {2, 3}, {3, 1}, {4, 3}, {4, 5}, {5, 3}}
Output: 3

Approach: The idea is to use recursion to solve the problem.



  • When an edge is added to the present list, check that if by adding that edge to the present list, does it still form a clique or not.
  • The vertices are added until the list does not form a clique. Then, the list is backtracked to find a larger subset which forms a clique.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
  
const int MAX = 100;
  
// Stores the vertices
int store[MAX], n;
  
// Graph
int graph[MAX][MAX];
  
// Degree of the vertices
int d[MAX];
  
// Function to check if the given set of
// vertices in store array is a clique or not
bool is_clique(int b)
{
  
    // Run a loop for all set of edges
    for (int i = 1; i < b; i++) {
        for (int j = i + 1; j < b; j++)
  
            // If any edge is missing
            if (graph[store[i]][store[j]] == 0)
                return false;
    }
    return true;
}
  
// Function to find all the sizes
// of maximal cliques
int maxCliques(int i, int l)
{
    // Maximal clique size
    int max_ = 0;
  
    // Check if any vertices from i+1
    // can be inserted
    for (int j = i + 1; j <= n; j++) {
  
        // Add the vertex to store
        store[l] = j;
  
        // If the graph is not a clique of size k then
        // it cannot be a clique by adding another edge
        if (is_clique(l + 1)) {
  
            // Update max
            max_ = max(max_, l);
  
            // Check if another edge can be added
            max_ = max(max_, maxCliques(j, l + 1));
        }
    }
    return max_;
}
  
// Driver code
int main()
{
    int edges[][2] = { { 1, 2 }, { 2, 3 }, { 3, 1 }, 
                       { 4, 3 }, { 4, 1 }, { 4, 2 } };
    int size = sizeof(edges) / sizeof(edges[0]);
    n = 4;
  
    for (int i = 0; i < size; i++) {
        graph[edges[i][0]][edges[i][1]] = 1;
        graph[edges[i][1]][edges[i][0]] = 1;
        d[edges[i][0]]++;
        d[edges[i][1]]++;
    }
  
    cout << maxCliques(0, 1);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the approach
import java.util.*;
  
class GFG
{
  
static int MAX = 100, n;
  
// Stores the vertices
static int []store = new int[MAX];
  
// Graph
static int [][]graph = new int[MAX][MAX];
  
// Degree of the vertices
static int []d = new int[MAX];
  
// Function to check if the given set of
// vertices in store array is a clique or not
static boolean is_clique(int b)
{
  
    // Run a loop for all set of edges
    for (int i = 1; i < b; i++)
    {
        for (int j = i + 1; j < b; j++)
  
            // If any edge is missing
            if (graph[store[i]][store[j]] == 0)
                return false;
    }
    return true;
}
  
// Function to find all the sizes
// of maximal cliques
static int maxCliques(int i, int l)
{
    // Maximal clique size
    int max_ = 0;
  
    // Check if any vertices from i+1
    // can be inserted
    for (int j = i + 1; j <= n; j++) 
    {
  
        // Add the vertex to store
        store[l] = j;
  
        // If the graph is not a clique of size k then
        // it cannot be a clique by adding another edge
        if (is_clique(l + 1))
        {
  
            // Update max
            max_ = Math.max(max_, l);
  
            // Check if another edge can be added
            max_ = Math.max(max_, maxCliques(j, l + 1));
        }
    }
    return max_;
}
  
// Driver code
public static void main(String[] args)
{
    int [][]edges = { { 1, 2 }, { 2, 3 }, { 3, 1 }, 
                    { 4, 3 }, { 4, 1 }, { 4, 2 } };
    int size = edges.length;
    n = 4;
  
    for (int i = 0; i < size; i++)
    {
        graph[edges[i][0]][edges[i][1]] = 1;
        graph[edges[i][1]][edges[i][0]] = 1;
        d[edges[i][0]]++;
        d[edges[i][1]]++;
    }
    System.out.print(maxCliques(0, 1));
}
}
  
// This code is contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of the approach
MAX = 100;
n = 0;
  
# Stores the vertices
store = [0] * MAX;
  
# Graph
graph = [[0 for i in range(MAX)] for j in range(MAX)];
  
# Degree of the vertices
d = [0] * MAX;
  
# Function to check if the given set of
# vertices in store array is a clique or not
def is_clique(b):
  
    # Run a loop for all set of edges
    for i in range(1, b):
        for j in range(i + 1, b):
  
            # If any edge is missing
            if (graph[store[i]][store[j]] == 0):
                return False;
      
    return True;
  
# Function to find all the sizes
# of maximal cliques
def maxCliques(i, l):
  
    # Maximal clique size
    max_ = 0;
  
    # Check if any vertices from i+1
    # can be inserted
    for j in range(i + 1, n + 1):
  
        # Add the vertex to store
        store[l] = j;
  
        # If the graph is not a clique of size k then
        # it cannot be a clique by adding another edge
        if (is_clique(l + 1)):
  
            # Update max
            max_ = max(max_, l);
  
            # Check if another edge can be added
            max_ = max(max_, maxCliques(j, l + 1));
          
    return max_;
      
# Driver code
if __name__ == '__main__':
    edges = [[ 1, 2 ],[ 2, 3 ],[ 3, 1 ],
           [ 4, 3 ],[ 4, 1 ],[ 4, 2 ]];
    size = len(edges);
    n = 4;
  
    for i in range(size):
        graph[edges[i][0]][edges[i][1]] = 1;
        graph[edges[i][1]][edges[i][0]] = 1;
        d[edges[i][0]] += 1;
        d[edges[i][1]] += 1;
      
    print(maxCliques(0, 1));
  
# This code is contributed by PrinciRaj1992

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the approach
using System;
  
class GFG
{
  
static int MAX = 100, n;
  
// Stores the vertices
static int []store = new int[MAX];
  
// Graph
static int [,]graph = new int[MAX,MAX];
  
// Degree of the vertices
static int []d = new int[MAX];
  
// Function to check if the given set of
// vertices in store array is a clique or not
static bool is_clique(int b)
{
  
    // Run a loop for all set of edges
    for (int i = 1; i < b; i++)
    {
        for (int j = i + 1; j < b; j++)
  
            // If any edge is missing
            if (graph[store[i],store[j]] == 0)
                return false;
    }
    return true;
}
  
// Function to find all the sizes
// of maximal cliques
static int maxCliques(int i, int l)
{
    // Maximal clique size
    int max_ = 0;
  
    // Check if any vertices from i+1
    // can be inserted
    for (int j = i + 1; j <= n; j++) 
    {
  
        // Add the vertex to store
        store[l] = j;
  
        // If the graph is not a clique of size k then
        // it cannot be a clique by adding another edge
        if (is_clique(l + 1))
        {
  
            // Update max
            max_ = Math.Max(max_, l);
  
            // Check if another edge can be added
            max_ = Math.Max(max_, maxCliques(j, l + 1));
        }
    }
    return max_;
}
  
// Driver code
public static void Main(String[] args)
{
    int [,]edges = { { 1, 2 }, { 2, 3 }, { 3, 1 }, 
                    { 4, 3 }, { 4, 1 }, { 4, 2 } };
    int size = edges.GetLength(0);
    n = 4;
  
    for (int i = 0; i < size; i++)
    {
        graph[edges[i, 0], edges[i, 1]] = 1;
        graph[edges[i, 1], edges[i, 0]] = 1;
        d[edges[i, 0]]++;
        d[edges[i, 1]]++;
    }
    Console.Write(maxCliques(0, 1));
}
}
  
// This code is contributed by PrinciRaj1992

chevron_right


Output:

4

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.