Given a sequence of matrices, find the most efficient way to multiply these matrices together. The problem is not actually to perform the multiplications, but merely to decide in which order to perform the multiplications. We have many options to multiply a chain of matrices because matrix multiplication is associative. In other words, no matter how we parenthesize the product, the result will be the same. For example, if we had four matrices A, B, C, and D, we would have:
(ABC)D = (AB)(CD) = A(BCD) = ....
However, the order in which we parenthesize the product affects the number of simple arithmetic operations needed to compute the product, or the efficiency. For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and C is a 5 × 60 matrix. Then,
Clearly the first parenthesization requires less number of operations. Given an array p[] which represents the chain of matrices such that the ith matrix Ai is of dimension p[i-1] x p[i]. We need to write a function MatrixChainOrder() that should return the minimum number of multiplications needed to multiply the chain.
Input: p[] = {40, 20, 30, 10, 30} Output: 26000
There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
Input: p[] = {10, 20, 30, 40, 30} Output: 30000
There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30.
Let the input 4 matrices be A, B, C and D. The minimum number of
multiplications are obtained by putting parenthesis in following way
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30
Input: p[] = {10, 20, 30} Output: 6000
There are only two matrices of dimensions 10x20 and 20x30. So there
is only one way to multiply the matrices, cost of which is 10*20*30
1) Optimal Substructure: A simple solution is to place parenthesis at all possible places, calculate the cost for each placement and return the minimum value. In a chain of matrices of size n, we can place the first set of parenthesis in n-1 ways. For example, if the given chain is of 4 matrices. let the chain be ABCD, then there are 3 ways to place first set of parenthesis outer side: (A)(BCD), (AB)(CD) and (ABC)(D). So when we place a set of parenthesis, we divide the problem into subproblems of smaller size. Therefore, the problem has optimal substructure property and can be easily solved using recursion. Minimum number of multiplication needed to multiply a chain of size n = Minimum of all n-1 placements (these placements create subproblems of smaller size)
2) Overlapping Subproblems Following is a recursive implementation that simply follows the above optimal substructure property.
Below is the implementation of the above idea:
C++
/* A naive recursive implementation that simply
follows the above optimal substructure property */
#include <bits/stdc++.h>
usingnamespacestd;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
intMatrixChainOrder(intp[], inti, intj)
{
if(i == j)
return0;
intk;
intmin = INT_MAX;
intcount;
// place parenthesis at different places
// between first and last matrix, recursively
// calculate count of multiplications for
// each parenthesis placement and return the
// minimum count
for(k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if(count < min)
min = count;
}
// Return minimum count
returnmin;
}
// Driver Code
intmain()
{
intarr[] = { 1, 2, 3, 4, 3 };
intn = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, 1, n - 1);
}
// This code is contributed by Shivi_Aggarwal
C
/* A naive recursive implementation that simply
follows the above optimal substructure property */
#include <limits.h>
#include <stdio.h>
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
intMatrixChainOrder(intp[], inti, intj)
{
if(i == j)
return0;
intk;
intmin = INT_MAX;
intcount;
// place parenthesis at different places between first
// and last matrix, recursively calculate count of
// multiplications for each parenthesis placement and
// return the minimum count
for(k = i; k < j; k++)
{
count = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if(count < min)
min = count;
}
// Return minimum count
returnmin;
}
// Driver code
intmain()
{
intarr[] = { 1, 2, 3, 4, 3 };
intn = sizeof(arr) / sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, 1, n - 1));
getchar();
return0;
}
Java
/* A naive recursive implementation that simply follows
the above optimal substructure property */
classMatrixChainMultiplication {
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
staticintMatrixChainOrder(intp[], inti, intj)
{
if(i == j)
return0;
intmin = Integer.MAX_VALUE;
// place parenthesis at different places between
// first and last matrix, recursively calculate
// count of multiplications for each parenthesis
// placement and return the minimum count
for(intk = i; k < j; k++)
{
intcount = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if(count < min)
min = count;
}
// Return minimum count
returnmin;
}
// Driver code
publicstaticvoidmain(String args[])
{
intarr[] = newint[] { 1, 2, 3, 4, 3};
intn = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, n - 1));
}
}
/* This code is contributed by Rajat Mishra*/
Python3
# A naive recursive implementation that
# simply follows the above optimal
# substructure property
importsys
# Matrix A[i] has dimension p[i-1] x p[i]
# for i = 1..n
defMatrixChainOrder(p, i, j):
ifi ==j:
return0
_min =sys.maxsize
# place parenthesis at different places
# between first and last matrix,
# recursively calculate count of
# multiplications for each parenthesis
# placement and return the minimum count
fork inrange(i, j):
count =(MatrixChainOrder(p, i, k)
+MatrixChainOrder(p, k +1, j)
+p[i-1] *p[k] *p[j])
ifcount < _min:
_min =count
# Return minimum count
return_min
# Driver code
arr =[1, 2, 3, 4, 3]
n =len(arr)
print("Minimum number of multiplications is ",
MatrixChainOrder(arr, 1, n-1))
# This code is contributed by Aryan Garg
C#
/* C# code for naive recursive implementation
that simply follows the above optimal
substructure property */
usingSystem;
classGFG {
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
staticintMatrixChainOrder(int[] p, inti, intj)
{
if(i == j)
return0;
intmin = int.MaxValue;
// place parenthesis at different places
// between first and last matrix, recursively
// calculate count of multiplications for each
// parenthesis placement and return the
// minimum count
for(intk = i; k < j; k++)
{
intcount = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if(count < min)
min = count;
}
// Return minimum count
returnmin;
}
// Driver code
publicstaticvoidMain()
{
int[] arr = newint[] { 1, 2, 3, 4, 3 };
intn = arr.Length;
Console.Write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, n - 1));
}
}
// This code is contributed by Sam007.
PHP
<?php
// A naive recursive implementation
// that simply follows the above
// optimal substructure property
// Matrix Ai has dimension
// p[i-1] x p[i] for i = 1..n
functionMatrixChainOrder(&$p, $i, $j)
{
if($i== $j)
return0;
$min= PHP_INT_MAX;
// place parenthesis at different places
// between first and last matrix, recursively
// calculate count of multiplications for
// each parenthesis placement and return
// the minimum count
for($k= $i; $k< $j; $k++)
{
$count= MatrixChainOrder($p, $i, $k) +
MatrixChainOrder($p, $k+ 1, $j) +
$p[$i- 1] *
$p[$k] * $p[$j];
if($count< $min)
$min= $count;
}
// Return minimum count
return$min;
}
// Driver Code
$arr= array(1, 2, 3, 4, 3);
$n= sizeof($arr);
echo"Minimum number of multiplications is ".
MatrixChainOrder($arr, 1, $n- 1);
// This code is contributed by ita_c
?>
Javascript
<script>
/* A naive recursive implementation that simply follows
the above optimal substructure property */
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
functionMatrixChainOrder(p , i , j)
{
if(i == j)
return0;
varmin = Number.MAX_VALUE;
// place parenthesis at different places between
// first and last matrix, recursively calculate
// count of multiplications for each parenthesis
// placement and return the minimum count
vark=0;
for(k = i; k < j; k++)
{
varcount = MatrixChainOrder(p, i, k)
+ MatrixChainOrder(p, k + 1, j)
+ p[i - 1] * p[k] * p[j];
if(count < min)
min = count;
}
// Return minimum count
returnmin;
}
// Driver code
vararr = [ 1, 2, 3, 4, 3 ];
varn = arr.length;
document.write(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, 1, n - 1));
// This code contributed by shikhasingrajput
</script>
Output
Minimum number of multiplications is 30
The time complexity of the above naive recursive approach is exponential. It should be noted that the above function computes the same subproblems again and again. See the following recursion tree for a matrix chain of size 4. The function MatrixChainOrder(p, 3, 4) is called two times. We can see that there are many subproblems being called more than once.
Since same suproblems are called again, this problem has Overlapping Subprolems property. So Matrix Chain Multiplication problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, recomputations of same subproblems can be avoided by constructing a temporary array m[][] in bottom up manner.
Dynamic Programming Solution Following is the implementation of the Matrix Chain Multiplication problem using Dynamic Programming (Tabulation vs Memoization)
Using Memoization –
C++
// C++ program using memoization
#include <bits/stdc++.h>
usingnamespacestd;
intdp[100][100];
// Function for matrix chain multiplication
intmatrixChainMemoised(int* p, inti, intj)
{
if(i == j)
{
return0;
}
if(dp[i][j] != -1)
{
returndp[i][j];
}
dp[i][j] = INT_MAX;
for(intk = i; k < j; k++)
{
dp[i][j] = min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
returndp[i][j];
}
intMatrixChainOrder(int* p, intn)
{
inti = 1, j = n - 1;
returnmatrixChainMemoised(p, i, j);
}
// Driver Code
intmain()
{
intarr[] = { 1, 2, 3, 4 };
intn = sizeof(arr) / sizeof(arr[0]);
memset(dp, -1, sizeofdp);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, n);
}
// This code is contribted by Sumit_Yadav
Java
// Java program using memoization
importjava.io.*;
importjava.util.*;
classGFG
{
staticint[][] dp = newint[100][100];
// Function for matrix chain multiplication
staticintmatrixChainMemoised(int[] p, inti, intj)
{
if(i == j)
{
return0;
}
if(dp[i][j] != -1)
{
returndp[i][j];
}
dp[i][j] = Integer.MAX_VALUE;
for(intk = i; k < j; k++)
{
dp[i][j] = Math.min(
dp[i][j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
returndp[i][j];
}
staticintMatrixChainOrder(int[] p, intn)
{
inti = 1, j = n - 1;
returnmatrixChainMemoised(p, i, j);
}
// Driver Code
publicstaticvoidmain (String[] args)
{
intarr[] = { 1, 2, 3, 4};
intn= arr.length;
for(int[] row : dp)
Arrays.fill(row, -1);
System.out.println("Minimum number of multiplications is "+ MatrixChainOrder(arr, n));
}
}
// This code is contributed by avanitrachhadiya2155
Python3
# Python program using memoization
importsys
dp =[[-1fori inrange(100)] forj inrange(100)]
# Function for matrix chain multiplication
defmatrixChainMemoised(p, i, j):
if(i ==j):
return0
if(dp[i][j] !=-1):
returndp[i][j]
dp[i][j] =sys.maxsize
fork inrange(i,j):
dp[i][j] =min(dp[i][j], matrixChainMemoised(p, i, k) +matrixChainMemoised(p, k +1, j)+p[i -1] *p[k] *p[j])
returndp[i][j]
defMatrixChainOrder(p,n):
i =1
j =n -1
returnmatrixChainMemoised(p, i, j)
# Driver Code
arr =[1, 2, 3, 4]
n =len(arr)
print("Minimum number of multiplications is",MatrixChainOrder(arr, n))
# This code is contributed by rag2127
C#
// C# program using memoization
usingSystem;
classGFG
{
staticint[,] dp = newint[100, 100];
// Function for matrix chain multiplication
staticintmatrixChainMemoised(int[] p, inti, intj)
{
if(i == j)
{
return0;
}
if(dp[i, j] != -1)
{
returndp[i, j];
}
dp[i, j] = Int32.MaxValue;
for(intk = i; k < j; k++)
{
dp[i, j] = Math.Min(
dp[i, j], matrixChainMemoised(p, i, k)
+ matrixChainMemoised(p, k + 1, j)
+ p[i - 1] * p[k] * p[j]);
}
returndp[i,j];
}
staticintMatrixChainOrder(int[] p, intn)
{
inti = 1, j = n - 1;
returnmatrixChainMemoised(p, i, j);
}
// Driver code
staticvoidMain()
{
int[] arr = { 1, 2, 3, 4 };
intn = arr.Length;
for(inti = 0; i < 100; i++)
{
for(intj = 0; j < 100; j++)
{
dp[i, j] = -1;
}
}
Console.WriteLine("Minimum number of multiplications is "+
MatrixChainOrder(arr, n));
}
}
// This code is contributed by divyeshrabadiya07.
Output
Minimum number of multiplications is 18
Using Tabulation –
C++
// See the Cormen book for details of the
// following algorithm
#include <bits/stdc++.h>
usingnamespacestd;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
intMatrixChainOrder(intp[], intn)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
intm[n][n];
inti, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the
matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for(i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for(L = 2; L < n; L++)
{
for(i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for(k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if(q < m[i][j])
m[i][j] = q;
}
}
}
returnm[1][n - 1];
}
// Driver Code
intmain()
{
intarr[] = { 1, 2, 3, 4 };
intsize = sizeof(arr) / sizeof(arr[0]);
cout << "Minimum number of multiplications is "
<< MatrixChainOrder(arr, size);
getchar();
return0;
}
// This code is contributed
// by Akanksha Rai
C
// See the Cormen book for details of the following
// algorithm
#include <limits.h>
#include <stdio.h>
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
intMatrixChainOrder(intp[], intn)
{
/* For simplicity of the program,
one extra row and one
extra column are allocated in m[][].
0th row and 0th
column of m[][] are not used */
intm[n][n];
inti, j, k, L, q;
/* m[i, j] = Minimum number of
scalar multiplications
needed to compute the matrix
A[i]A[i+1]...A[j] =
A[i..j] where dimension of A[i]
is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for(i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for(L = 2; L < n; L++) {
for(i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
m[i][j] = INT_MAX;
for(k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if(q < m[i][j])
m[i][j] = q;
}
}
}
returnm[1][n - 1];
}
// Driver code
intmain()
{
intarr[] = { 1, 2, 3, 4 };
intsize = sizeof(arr) / sizeof(arr[0]);
printf("Minimum number of multiplications is %d ",
MatrixChainOrder(arr, size));
getchar();
return0;
}
Java
// Dynamic Programming Java implementation of Matrix
// Chain Multiplication.
// See the Cormen book for details of the following
// algorithm
classMatrixChainMultiplication
{
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
staticintMatrixChainOrder(intp[], intn)
{
/* For simplicity of the
program, one extra row and
one extra column are allocated in m[][]. 0th row
and 0th column of m[][] are not used */
intm[][] = newint[n][n];
inti, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the matrix
A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for(i = 1; i < n; i++)
m[i][i] = 0;
// L is chain length.
for(L = 2; L < n; L++)
{
for(i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if(j == n)
continue;
m[i][j] = Integer.MAX_VALUE;
for(k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i][k] + m[k + 1][j]
+ p[i - 1] * p[k] * p[j];
if(q < m[i][j])
m[i][j] = q;
}
}
}
returnm[1][n - 1];
}
// Driver code
publicstaticvoidmain(String args[])
{
intarr[] = newint[] { 1, 2, 3, 4};
intsize = arr.length;
System.out.println(
"Minimum number of multiplications is "
+ MatrixChainOrder(arr, size));
}
}
/* This code is contributed by Rajat Mishra*/
Python
# Dynamic Programming Python implementation of Matrix
# Chain Multiplication. See the Cormen book for details
# of the following algorithm
importsys
# Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
defMatrixChainOrder(p, n):
# For simplicity of the program,
# one extra row and one
# extra column are allocated in m[][].
# 0th row and 0th
# column of m[][] are not used
m =[[0forx inrange(n)] forx inrange(n)]
# m[i, j] = Minimum number of scalar
# multiplications needed
# to compute the matrix A[i]A[i + 1]...A[j] =
# A[i..j] where
# dimension of A[i] is p[i-1] x p[i]
# cost is zero when multiplying one matrix.
fori inrange(1, n):
m[i][i] =0
# L is chain length.
forL inrange(2, n):
fori inrange(1, n-L +1):
j =i +L-1
m[i][j] =sys.maxint
fork inrange(i, j):
# q = cost / scalar multiplications
q =m[i][k] +m[k +1][j] +p[i-1]*p[k]*p[j]
ifq < m[i][j]:
m[i][j] =q
returnm[1][n-1]
# Driver code
arr =[1, 2, 3, 4]
size =len(arr)
print("Minimum number of multiplications is "+
str(MatrixChainOrder(arr, size)))
# This Code is contributed by Bhavya Jain
C#
// Dynamic Programming C# implementation of
// Matrix Chain Multiplication.
// See the Cormen book for details of the
// following algorithm
usingSystem;
classGFG
{
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
staticintMatrixChainOrder(int[] p, intn)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
int[, ] m = newint[n, n];
inti, j, k, L, q;
/* m[i, j] = Minimum number of scalar
multiplications needed
to compute the matrix A[i]A[i+1]...A[j]
= A[i..j] where dimension of A[i] is
p[i-1] x p[i] */
// cost is zero when multiplying
// one matrix.
for(i = 1; i < n; i++)
m[i, i] = 0;
// L is chain length.
for(L = 2; L < n; L++)
{
for(i = 1; i < n - L + 1; i++)
{
j = i + L - 1;
if(j == n)
continue;
m[i, j] = int.MaxValue;
for(k = i; k <= j - 1; k++)
{
// q = cost/scalar multiplications
q = m[i, k] + m[k + 1, j]
+ p[i - 1] * p[k] * p[j];
if(q < m[i, j])
m[i, j] = q;
}
}
}
returnm[1, n - 1];
}
// Driver code
publicstaticvoidMain()
{
int[] arr = newint[] { 1, 2, 3, 4 };
intsize = arr.Length;
Console.Write("Minimum number of "
+ "multiplications is "
+ MatrixChainOrder(arr, size));
}
}
// This code is contributed by Sam007
PHP
<?php
// Dynamic Programming Python implementation
// of Matrix Chain Multiplication.
// See the Cormen book for details of the
// following algorithm Matrix Ai has
// dimension p[i-1] x p[i] for i = 1..n
functionMatrixChainOrder($p, $n)
{
/* For simplicity of the program, one
extra row and one extra column are
allocated in m[][]. 0th row and 0th
column of m[][] are not used */
$m[][] = array($n, $n);
/* m[i, j] = Minimum number of scalar
multiplications needed to compute the
matrix A[i]A[i+1]...A[j] = A[i..j] where
dimension of A[i] is p[i-1] x p[i] */
// cost is zero when multiplying one matrix.
for($i= 1; $i< $n; $i++)
$m[$i][$i] = 0;
// L is chain length.
for($L= 2; $L< $n; $L++)
{
for($i= 1; $i< $n- $L+ 1; $i++)
{
$j= $i+ $L- 1;
if($j== $n)
continue;
$m[$i][$j] = PHP_INT_MAX;
for($k= $i; $k<= $j- 1; $k++)
{
// q = cost/scalar multiplications
$q= $m[$i][$k] + $m[$k+ 1][$j] +
$p[$i- 1] * $p[$k] * $p[$j];
if($q< $m[$i][$j])
$m[$i][$j] = $q;
}
}
}
return$m[1][$n-1];
}
// Driver Code
$arr= array(1, 2, 3, 4);
$size= sizeof($arr);
echo"Minimum number of multiplications is ".
MatrixChainOrder($arr, $size);
// This code is contributed by Mukul Singh
?>
Javascript
<script>
// Dynamic Programming javascript implementation of Matrix
// Chain Multiplication.
// See the Cormen book for details of the following
// algorithm
// Matrix Ai has dimension p[i-1] x p[i] for i = 1..n
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.
Writing code in comment?
Please use ide.geeksforgeeks.org,
generate link and share the link here.
We use cookies to ensure you have the best browsing experience on our website. By using our site, you
acknowledge that you have read and understood our
Cookie Policy &
Privacy Policy