Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
matplotlib.pyplot.xticks() Function
The annotate() function in pyplot module of matplotlib library is used to get and set the current tick locations and labels of the x-axis.
Syntax:
matplotlib.pyplot.xticks(ticks=None, labels=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- ticks: This parameter is the list of xtick locations. and an optional parameter. If an empty list is passed as an argument then it will removes all xticks
- labels: This parameter contains labels to place at the given ticks locations. And it is an optional parameter.
- **kwargs: This parameter is Text properties that is used to control the appearance of the labels.
Returns: This returns the following:
- locs :This returns the list of ytick locations.
- labels :This returns the list of ylabel Text objects.
The resultant is (locs, labels)
Below examples illustrate the matplotlib.pyplot.xticks() function in matplotlib.pyplot:
Example #1:
import numpy as np
import matplotlib.pyplot as plt
x = [ 1 , 2 , 3 , 4 ]
y = [ 95 , 38 , 54 , 35 ]
labels = [ 'Geeks1' , 'Geeks2' , 'Geeks3' , 'Geeks4' ]
plt.plot(x, y)
plt.xticks(x, labels, rotation = 'vertical' )
plt.margins( 0.2 )
plt.subplots_adjust(bottom = 0.15 )
plt.show()
|
Output:

Example #2:
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes
def get_demo_image():
from matplotlib.cbook import get_sample_data
import numpy as np
f = get_sample_data( "axes_grid / bivariate_normal.npy" ,
asfileobj = False )
z = np.load(f)
return z, ( 3 , 19 , 4 , 13 )
fig, ax = plt.subplots(figsize = [ 5 , 4 ])
Z, extent = get_demo_image()
ax. set (aspect = 1 ,
xlim = ( 0 , 65 ),
ylim = ( 0 , 50 ))
axins = zoomed_inset_axes(ax, zoom = 2 ,
loc = 'upper right' )
im = axins.imshow(Z, extent = extent,
interpolation = "nearest" ,
origin = "upper" )
plt.xlabel( 'X-axis' )
plt.ylabel( 'Y-axis' )
plt.xticks(visible = False )
plt.show()
|
Output:
