Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
Sample Code
# sample code import matplotlib.pyplot as plt plt.plot([ 1 , 2 , 3 , 4 ], [ 16 , 4 , 1 , 8 ]) plt.show() |
Output:
matplotlib.pyplot.tripcolor() Function
The tripcolor() function in pyplot module of matplotlib library is used to create a pseudocolor plot of an unstructured triangular grid.
Syntax: matplotlib.pyplot.tripcolor(*args, alpha=1.0, norm=None, cmap=None, vmin=None, vmax=None, shading=’flat’, facecolors=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- x, y: These parameter are the x and y coordinates of the data which is to be plot.
- triangulation: This parameter is a matplotlib.tri.Triangulation object.
- **kwargs: This parameter is Text properties that is used to control the appearance of the labels.
All remaining
args
andkwargs
are the same as for matplotlib.pyplot. pcolor().Returns: This returns the list of 2 Line2D containing following:
- The lines plotted for triangles edges.
- The markers plotted for triangles nodes
Below examples illustrate the matplotlib.pyplot.tripcolor() function in matplotlib.pyplot:
Example-1:
# Implementation of matplotlib function import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np ang = 40 rad = 10 radm = 0.35 radii = np.linspace(radm, 0.95 , rad) angles = np.linspace( 0 , 1.5 * np.pi, ang) angles = np.repeat(angles[..., np.newaxis], rad, axis = 1 ) angles[:, 1 :: 2 ] + = np.pi / ang x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() z = (np.sin( 4 * radii) * np.cos( 4 * angles)).flatten() triang = tri.Triangulation(x, y) triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1 ), y[triang.triangles].mean(axis = 1 )) < radm) fig1, ax1 = plt.subplots() ax1.set_aspect( 'equal' ) tpc = ax1.tripcolor(triang, z, shading = 'flat' ) fig1.colorbar(tpc) fig1.suptitle('matplotlib.pyplot.tripcolor() function\ Example\n\n', fontweight = "bold" ) plt.show() |
Output:
Example-2:
# Implementation of matplotlib function import matplotlib.pyplot as plt import matplotlib.tri as tri import numpy as np xy = np.asarray([ [ - 0.057 , 0.881 ], [ - 0.062 , 0.876 ], [ - 0.078 , 0.876 ], [ - 0.087 , 0.872 ], [ - 0.030 , 0.907 ], [ - 0.007 , 0.905 ], [ - 0.057 , 0.916 ], [ - 0.025 , 0.933 ], [ - 0.045 , 0.897 ], [ - 0.057 , 0.895 ], [ - 0.073 , 0.900 ], [ - 0.087 , 0.898 ], [ - 0.090 , 0.904 ], [ - 0.069 , 0.907 ], [ - 0.069 , 0.921 ], [ - 0.080 , 0.919 ], [ - 0.073 , 0.928 ], [ - 0.052 , 0.930 ], [ - 0.048 , 0.942 ], [ - 0.062 , 0.949 ], [ - 0.054 , 0.958 ], [ - 0.069 , 0.954 ], [ - 0.087 , 0.952 ], [ - 0.087 , 0.959 ], [ - 0.080 , 0.966 ], [ - 0.085 , 0.973 ], [ - 0.087 , 0.965 ], [ - 0.097 , 0.965 ], [ - 0.097 , 0.975 ], [ - 0.092 , 0.984 ], [ - 0.101 , 0.980 ], [ - 0.108 , 0.980 ], [ - 0.104 , 0.987 ], [ - 0.102 , 0.993 ], [ - 0.115 , 1.001 ], [ - 0.099 , 0.996 ], [ - 0.101 , 1.007 ], [ - 0.090 , 1.010 ], [ - 0.087 , 1.021 ], [ - 0.069 , 1.021 ], [ - 0.052 , 1.022 ], [ - 0.052 , 1.017 ], [ - 0.069 , 1.010 ], [ - 0.064 , 1.005 ], [ - 0.048 , 1.005 ], [ - 0.031 , 1.005 ], [ - 0.031 , 0.996 ], [ - 0.040 , 0.987 ], [ - 0.045 , 0.980 ], [ - 0.052 , 0.975 ], [ - 0.040 , 0.973 ], [ - 0.026 , 0.968 ], [ - 0.020 , 0.954 ], [ - 0.006 , 0.947 ], [ 0.003 , 0.935 ], [ 0.006 , 0.926 ], [ 0.005 , 0.921 ], [ 0.022 , 0.923 ], [ 0.033 , 0.912 ], [ 0.029 , 0.905 ], [ 0.017 , 0.900 ], [ 0.012 , 0.895 ], [ 0.027 , 0.893 ], [ 0.019 , 0.886 ], [ 0.001 , 0.883 ], [ - 0.012 , 0.884 ], [ - 0.029 , 0.883 ], [ - 0.038 , 0.879 ], [ - 0.073 , 0.928 ], [ - 0.052 , 0.930 ], [ - 0.048 , 0.942 ], [ - 0.062 , 0.949 ], [ - 0.054 , 0.958 ], [ - 0.069 , 0.954 ], [ - 0.087 , 0.952 ], [ - 0.087 , 0.959 ], [ - 0.080 , 0.966 ], [ - 0.085 , 0.973 ], [ - 0.087 , 0.965 ], [ - 0.097 , 0.965 ], [ - 0.077 , 0.990 ], [ - 0.059 , 0.993 ]]) x, y = np.rad2deg(xy).T triangles = np.asarray([[ 1 , 66 , 2 ], [ 64 , 2 , 65 ], [ 63 , 3 , 64 ],[ 6 , 5 , 9 ], [ 61 , 68 , 62 ], [ 69 , 68 , 61 ], [ 9 , 5 , 70 ], [ 6 , 8 , 7 ], [ 21 , 24 , 22 ], [ 17 , 16 , 45 ], [ 20 , 17 , 45 ], [ 21 , 25 , 24 ], [ 27 , 26 , 28 ], [ 20 , 72 , 21 ], [ 25 , 21 , 72 ], [ 45 , 72 , 20 ], [ 25 , 28 , 26 ], [ 44 , 73 , 45 ], [ 72 , 45 , 73 ], [ 28 , 25 , 29 ], [ 29 , 25 , 31 ], [ 43 , 73 , 44 ], [ 73 , 43 , 40 ], [ 72 , 73 , 39 ], [ 72 , 31 , 25 ], [ 42 , 40 , 43 ], [ 31 , 30 , 29 ], [ 39 , 73 , 40 ], [ 4 , 70 , 5 ], [ 8 , 6 , 9 ], [ 56 , 69 , 57 ], [ 69 , 56 , 52 ], [ 70 , 10 , 9 ], [ 54 , 53 , 55 ], [ 56 , 55 , 53 ], [ 68 , 70 , 4 ], [ 52 , 56 , 53 ], [ 11 , 10 , 12 ], [ 69 , 71 , 68 ], [ 68 , 13 , 70 ], [ 10 , 70 , 13 ], [ 51 , 50 , 52 ], [ 13 , 68 , 71 ], [ 52 , 71 , 69 ], [ 12 , 10 , 13 ], [ 71 , 52 , 50 ], [ 71 , 14 , 13 ], [ 50 , 49 , 71 ], [ 49 , 48 , 71 ], [ 14 , 16 , 15 ], [ 14 , 71 , 48 ], [ 17 , 19 , 18 ], [ 17 , 20 , 19 ], [ 48 , 16 , 14 ], [ 48 , 47 , 16 ], [ 47 , 46 , 16 ], [ 16 , 46 , 45 ], [ 23 , 22 , 24 ], [ 42 , 41 , 40 ], [ 72 , 33 , 31 ], [ 32 , 31 , 33 ], [ 39 , 38 , 72 ], [ 33 , 72 , 38 ], [ 33 , 38 , 34 ], [ 37 , 35 , 38 ], [ 34 , 38 , 35 ], [ 35 , 37 , 36 ]]) xmid = x[triangles].mean(axis = 1 ) ymid = y[triangles].mean(axis = 1 ) x0 = - 2 y0 = 20 zfaces = np.exp( - 0.3 * ((xmid - x0) + (ymid - y0) )) fig3, ax3 = plt.subplots() ax3.set_aspect( 'equal' ) tpc = ax3.tripcolor(x, y, triangles, facecolors = zfaces, edgecolors = 'k' ) fig3.colorbar(tpc) ax3.set_title( 'matplotlib.pyplot.tripcolor() Example' ) plt.show() |
Output:
Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.
To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.