Matplotlib.pyplot.legend() in Python

Matplotlib is one of the most popular Python packages used for data visualization. It is a cross-platform library for making 2D plots from data in arrays. Pyplot is a collection of command style functions that make matplotlib work like MATLAB. Each pyplot function makes some change to a figure: e.g., creates a figure, creates a plotting area in a figure, plots some lines in a plotting area, decorates the plot with labels, etc.

Matplotlib.pyplot.legend()

A legend is an area describing the elements of the graph. In the matplotlib library, there’s a function called legend() which is used to Place a legend on the axes.

The attribute Loc in legend() is used to specify the location of the legend.Default value of loc is loc=”best” (upper left). The strings ‘upper left’, ‘upper right’, ‘lower left’, ‘lower right’ place the legend at the corresponding corner of the axes/figure.

The attribute bbox_to_anchor=(x, y) of legend() function is used to specify the coordinates of the legend, and the attribute ncol represents the number of columns that the legend has.It’s default value is 1.

Syntax:



matplotlib.pyplot.legend([“blue”, “green”], bbox_to_anchor=(0.75, 1.15), ncol=2)

The Following are some more attributes of function legend() :

  • shadow: [None or bool] Whether to draw a shadow behind the legend.It’s Default value is None.
  • markerscale: [None or int or float] The relative size of legend markers compared with the originally drawn ones.The Default is None.
  • numpoints: [None or int] The number of marker points in the legend when creating a legend entry for a Line2D (line).The Default is None.
  • fontsize: The font size of the legend.If the value is numeric the size will be the absolute font size in points.
  • facecolor: [None or “inherit” or color] The legend’s background color.
  • edgecolor: [None or “inherit” or color] The legend’s background patch edge color.

Ways to use legend() function in Python –

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
  
# X-axis values
x = [1, 2, 3, 4, 5]
  
# Y-axis values 
y = [1, 4, 9, 16, 25]
  
# Function to plot  
plt.plot(x, y)
  
# Function add a legend  
plt.legend(['single element'])
  
# function to show the plot
plt.show()

chevron_right


Output :
graph

Example 2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing modules
import numpy as np
import matplotlib.pyplot as plt
  
# Y-axis values
y1 = [2, 3, 4.5]
  
# Y-axis values 
y2 = [1, 1.5, 5]
  
# Function to plot  
plt.plot(y1)
plt.plot(y2)
  
# Function add a legend  
plt.legend(["blue", "green"], loc ="lower right")
  
# function to show the plot
plt.show()

chevron_right


Output :
graph

Example 3:

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
  
# X-axis values
x = np.arange(5)
  
# Y-axis values
y1 = [1, 2, 3, 4, 5]
  
# Y-axis values 
y2 = [1, 4, 9, 16, 25]
  
# Function to plot  
plt.plot(x, y1, label ='Numbers')
plt.plot(x, y2, label ='Square of numbers')
  
# Function add a legend  
plt.legend()
  
# function to show the plot
plt.show()

chevron_right


Output :
graph

Example 4:

filter_none

edit
close

play_arrow

link
brightness_4
code

import numpy as np
import matplotlib.pyplot as plt
  
x = np.linspace(0, 10, 1000)
fig, ax = plt.subplots()
  
ax.plot(x, np.sin(x), '--b', label ='Sine')
ax.plot(x, np.cos(x), c ='r', label ='Cosine')
ax.axis('equal')
  
leg = ax.legend(loc ="lower left");

chevron_right


Output:

Example 5:

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing modules
import numpy as np
import matplotlib.pyplot as plt
   
# X-axis values
x = [0, 1, 2, 3, 4, 5, 6, 7, 8]
   
# Y-axis values
y1 = [0, 3, 6, 9, 12, 15, 18, 21, 24]
# Y-axis values 
y2 = [0, 1, 2, 3, 4, 5, 6, 7, 8]
   
# Function to plot  
plt.plot(y1, label ="y = x")
plt.plot(y2, label ="y = 3x")
   
# Function add a legend  
plt.legend(bbox_to_anchor =(0.75, 1.15), ncol = 2)
   
# function to show the plot
plt.show()

chevron_right


Output:
graph




My Personal Notes arrow_drop_up


If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.


Article Tags :

1


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.