Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Matplotlib.pyplot.hot() in Python

  • Last Updated : 19 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.hot() Function

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning - Basic Level Course

The hot() function in pyplot module of matplotlib library is used to set the colormap to “hot”.
Syntax:

matplotlib.pyplot.hot()

Below examples illustrate the matplotlib.pyplot.hot() function in matplotlib.pyplot:



Example #1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np 
  
      
ang = 40
rad = 10
radm = 0.35
radii = np.linspace(radm, 0.95, rad)
      
angles = np.linspace(0, 4 * np.pi, ang)
angles = np.repeat(angles[..., np.newaxis],
                   rad, axis = 1)
angles[:, 1::2] += np.pi / ang
      
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.sin(4 * radii) * np.cos(4 * angles)).flatten()
      
triang = tri.Triangulation(x, y)
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),
                         y[triang.triangles].mean(axis = 1))
                < radm)
      
tpc = plt.tripcolor(triang, z, shading ='flat')
plt.colorbar(tpc)
plt.hot()
  
plt.title('matplotlib.pyplot.hot() function \
Example', fontweight ="bold")
  
plt.show()

Output:

Example #2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
  
  
dx, dy = 0.015, 0.05
x = np.arange(-3.0, 3.0, dx)
y = np.arange(-3.0, 3.0, dy)
X, Y = np.meshgrid(x, y)
      
extent = np.min(x), np.max(x), np.min(y), np.max(y)
       
     
Z1 = np.add.outer(range(6), range(6)) % 2
plt.imshow(Z1, cmap ="binary_r",
           interpolation ='nearest',
           extent = extent, 
           alpha = 1)
      
def geeks(x, y):
    return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))
      
Z2 = geeks(X, Y)
      
plt.imshow(Z2, alpha = 0.7
           interpolation ='bilinear',
           extent = extent)
plt.hot()
  
plt.title('matplotlib.pyplot.hot() function\
Example', fontweight ="bold")
  
plt.show()

Output:




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!