Skip to content
Related Articles

Related Articles

Matplotlib.pyplot.cool() in Python

View Discussion
Improve Article
Save Article
  • Last Updated : 21 Apr, 2020
View Discussion
Improve Article
Save Article

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.

matplotlib.pyplot.cool() Function

The cool() function in pyplot module of matplotlib library is used to set the colormap to “cool”.

Syntax: matplotlib.pyplot.cool()

Below examples illustrate the matplotlib.pyplot.cool() function in matplotlib.pyplot:

Example #1:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import numpy as np
     
     
ang = 40
rad = 10
radm = 0.35
radii = np.linspace(radm, 0.95, rad)
     
angles = np.linspace(0, np.pi, ang)
angles = np.repeat(angles[..., np.newaxis], rad, axis = 1)
angles[:, 1::2] += np.pi / ang
     
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
z = (np.sin(4 * radii) * np.cos(4 * angles)).flatten()
     
triang = tri.Triangulation(x, y)
triang.set_mask(np.hypot(x[triang.triangles].mean(axis = 1),
                         y[triang.triangles].mean(axis = 1))
                < radm)
     
tpc = plt.tripcolor(triang, z, shading ='flat')
plt.colorbar(tpc)
plt.cool()
plt.title('matplotlib.pyplot.cool() function Example'
           fontweight ="bold")
plt.show()

Output:

Example #2:




# Implementation of matplotlib function
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.colors import LogNorm
        
dx, dy = 0.015, 0.05
x = np.arange(-4.0, 4.0, dx)
y = np.arange(-4.0, 4.0, dy)
X, Y = np.meshgrid(x, y)
     
extent = np.min(x), np.max(x), np.min(y), np.max(y)
      
    
Z1 = np.add.outer(range(8), range(8)) % 2
plt.imshow(Z1, cmap ="binary_r",
           interpolation ='nearest',
           extent = extent, alpha = 1)
     
def geeks(x, y):
    return (1 - x / 2 + x**5 + y**6) * np.exp(-(x**2 + y**2))
     
Z2 = geeks(X, Y)
     
plt.imshow(Z2, alpha = 0.7, interpolation ='bilinear',
                 extent = extent)
plt.cool()
plt.title('matplotlib.pyplot.cool() function Example',
           fontweight ="bold")
plt.show()

Output:


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!