Skip to content
Related Articles

Related Articles

Matplotlib.figure.Figure.get_tight_layout() in Python
  • Last Updated : 30 Apr, 2020

Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. The figure module provides the top-level Artist, the Figure, which contains all the plot elements. This module is used to control the default spacing of the subplots and top level container for all plot elements.

matplotlib.figure.Figure.get_tight_layout() method

The get_tight_layout() method figure module of matplotlib library is used to check whether tight_layout is called when drawing.

Syntax: get_size_inches(self)

Parameters: This method does not accept any parameters.

Returns: This method return whether tight_layout is called.



Below examples illustrate the matplotlib.figure.Figure.get_tight_layout() function in matplotlib.figure:

Example 1:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function 
import numpy as np
import matplotlib.pyplot as plt
   
  
x = np.arange(-5, 5, 0.01)
y1 = -3 * x*x + 10 * x + 10
y2 = 3 * x*x + x
   
fig, ax = plt.subplots()
fig.tight_layout()
ax.plot(x, y1, x, y2, color ='black')
  
ax.fill_between(x, y1, y2, where = y2 >y1,
                facecolor ='green',
                alpha = 0.8)
ax.fill_between(x, y1, y2, where = y2 <= y1,
                facecolor ='black',
                alpha = 0.8)
  
w = fig.get_tight_layout()
  
ax.text(-3, -80,
        "Value Return by get_tight_layout() : " 
        + str(w),
        fontweight ="bold")
      
fig.canvas.draw()
fig.suptitle('matplotlib.figure.Figure.get_tight_layout()\
 function Example', fontweight ="bold"
  
plt.show()

chevron_right


Output:

Example 2:

filter_none

edit
close

play_arrow

link
brightness_4
code

# Implementation of matplotlib function
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
import numpy as np
     
      
# Create triangulation.
x = np.asarray([0, 1, 2, 3, 0.5,
                1.5, 2.5, 1, 2,
                1.5])
y = np.asarray([0, 0, 0, 0, 1.0,
                1.0, 1.0, 2, 2
                3.0])
triangles = [[0, 1, 4], [1, 5, 4], 
             [2, 6, 5], [4, 5, 7],
             [5, 6, 8], [5, 8, 7], 
             [7, 8, 9], [1, 2, 5], 
             [2, 3, 6]]
  
triang = mtri.Triangulation(x, y, triangles)
z = np.cos(1.5 * x) * np.cos(1.5 * y)
     
fig, axs = plt.subplots()
axs.tricontourf(triang, z)
axs.triplot(triang, 'go-', color ='white')
fig.tight_layout(rect =(0.1, 0.1, 0.95, 0.95))
  
w = fig.get_tight_layout()
axs.text(.7, 2.8
         "Value Return by get_tight_layout() : " 
         + str(w),
         fontweight ="bold")
      
fig.canvas.draw()
  
fig.suptitle('matplotlib.figure.Figure.get_tight_layout() \
function Example', fontweight ="bold"
  
plt.show()

chevron_right


Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :